Cinemática Movimiento rectilíneo Movimiento de caída de los cuerpos Prácticas simuladas: Regresión lineal Movimiento rectilíneo uniforme Movimiento rectilíneo u. acelerado Movimiento curvilíneo Movimiento bajo la aceleración constante de la gravedad Problemas-juego: Apuntar un cañón para dar en un blanco fijo Bombardear un blanco móvil desde un avión
Relación entre las magnitudes lineales y angulares Física en el juego del baloncesto |
Movimiento
circular uniforme Movimiento circular uniformemente acelerado
|
|
En esta sección vamos a definir las magnitudes características de un movimiento circular, análogas a las ya definidas para el movimiento rectilíneo. Se define movimiento circular como aquél cuya trayectoria es una circunferencia. Una vez situado el origen O de ángulos describimos el movimiento circular mediante las siguientes magnitudes. En el instante t el móvil se encuentra en el punto P. Su posición angular viene dada por el ángulo q, que hace el punto P, el centro de la circunferencia C y el origen de ángulos O. En el instante t' el móvil se encontrará en la posición P' dada por el ángulo q '. El móvil se habrá desplazado Dq=q '-q en el intervalo de tiempo Dt=t'-t comprendido entre t y t'. Velocidad angular, wSe denomina velocidad angular media al cociente entre le desplazamiento y el tiempo. Como ya se explicó en el movimiento rectilíneo, la velocidad angular en un instante se obtiene calculando la velocidad angular media en un intervalo de tiempo que tiende a cero. Si en el instante t la velocidad angular del móvil es w y en el instante t' la velocidad angular del móvil es w'. La velocidad angular del móvil ha cambiado Dw=w'-w en el intervalo de tiempo Dt=t'-t comprendido entre t y t'. Aceleración angular, aSe denomina velocidad angular media al cociente entre le desplazamiento y el tiempo. La aceleración angular en un instante, se obtiene calculando la aceleración angular media en un intervalo de tiempo que tiende a cero.
Dada la velocidad angular, hallar el desplazamiento angularSi conocemos un registro de la velocidad angular del móvil podemos calcular su desplazamiento q-q0 entre los instantes t0 y t, mediante la integral definida. El producto w dt representa el desplazamiento angular del móvil entre los instantes t y t+dt, o en el intervalo dt. El desplazamiento total es la suma de los infinitos desplazamientos angulares infinitesimales entre los instantes t0 y t. En la figura, se muestra una gráfica de la velocidad angular en función del tiempo, el área en color azul mide el desplazamiento angular total del móvil entre los instantes t0 y t, el arco en color azul marcado en la circunferencia.
Hallamos la posición angular q del móvil en el instante t, sumando la posición inicial q0 al desplazamiento, calculado mediante la medida del área bajo la curva w-t o mediante cálculo de la integral definida en la fórmula anterior.
Dada la aceleración angular, hallar el cambio de velocidad angularDel mismo modo que hemos calculado el desplazamiento angular del móvil entre los instantes t0 y t, a partir de un registro de la velocidad angular w en función del tiempo t, podemos calcular el cambio de velocidad w-w0 que experimenta el móvil entre dichos instantes, a partir de una gráfica de la aceleración angular en función del tiempo. En la figura, el cambio de velocidad w-w0 es el área bajo la curva a-t, o el valor numérico de la integral definida en la fórmula anterior. Conociendo el cambio de velocidad angular w-w0, y el valor inicial w0 en el instante inicial t0, podemos calcular la velocidad angular w en el instante t. Resumiendo, las fórmulas empleadas para resolver problemas de movimiento circular son similares a las del movimiento rectilíneo.
Movimiento circular uniformeUn movimiento circular uniforme es aquél cuya velocidad angular w es constante, por tanto, la aceleración angular es cero. La posición angular q del móvil en el instante t lo podemos calcular integrando q-q0=w(t-t0) o gráficamente, en la representación de w en función de t. Habitualmente, el instante inicial t0 se toma como cero. Las ecuaciones del movimiento circular uniforme son análogas a las del movimiento rectilíneo uniforme
Movimiento circular uniformemente aceleradoUn movimiento circular uniformemente acelerado es aquél cuya aceleración a es constante. Dada la aceleración angular podemos obtener el cambio de velocidad angular w-w0 entre los instantes t0 y t, mediante integración, o gráficamente. Dada la velocidad angular w en función del tiempo, obtenemos el desplazamiento q-q0 del móvil entre los instantes t0 y t, gráficamente (área de un rectángulo + área de un triángulo), o integrando Habitualmente, el instante inicial t0 se toma como cero. Las fórmulas del movimiento circular uniformemente acelerado son análogas a las del movimiento rectilíneo uniformemente acelerado. |