Chapter 1

The Failure of Classical
Mechanics

Classical mechanics, erected by Galileo and Newton, with enormous contribu-
tions from many others, is remarkably successful. It enables us to calculate
celestial motions to great accuracy, and triumphed in the precision of the un-
manned space program (with some detailed refinements from General Relativity,
which is still essentially classical). Yet, fundamentally, classical physics is not
correct.

Let us start by discussing some of the indications known in the 19th cen-
tury that something was amiss in the theoretical framework. First we discuss a
thermodynamic problem. Probably you recall that at a definite absolute tem-
perature T the energy of a system having one degree of freedom in thermal
equilibrium is

E= %kT, (1.1)

where k = Boltzmann’s constant = 1.38 x 10716 erg/K. (See Appendix for a
derivation.) If a system has n degrees of freedom, and is in thermal equilibrium,
it has this much energy per degree of freedom, or

1
E = JnkT. (1.2)

Consider a monatomic gas (a noble gas, such as He, Ar, Ne) consisting of N
atoms. Since there are three directions of space in which each atom can move,
the energy of the gas is

By = 3N%kT7 (1.3)

and then the specific heat (at constant volume), the amount of energy required
to raise the temperature of the gas by 1 K, is
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Experimentally, this is very nearly true.
What about diatomic molecules, such as Ha, Os, N, which consist of molecules
with two atoms each? Now each atom has

e 3 translational degrees of freedom,

e 2 rotational degrees of freedom (you must specify the direction of the axis
of rotation, which takes two numbers), and

e 2 vibrational degrees of freedom, which like a spring have quadratic terms
in the energy corresponding to kinetic and potential energy:

1 1
E= §m02 + 5]@:172, (1.5)

where v is the relative radial velocity of the atoms, and z is the relative
coordinate.)

That is, there are seven (quadratic) degrees of freedom in all. Thus we expect
the energy of the gas, and its specific heat, to be

7 7
Eih = S VAT, = 5 VE. (1.6)
But experimentally, we typically find something more like ¢ ~ SNk. More

precisely, the situation is something like that sketched in Fig. 1.1. At very low
temperatures, it is a though only the translational degrees of freedom come in,
at room temperature, translational and rotational motion are present, and only
at very high temperatures does vibration play a role. This “freezing out” of
degrees of freedom cannot be understood classically. In the 19th century, this
failure of theory gave people grave concern whether atoms existed.

As a second example, consider a crystal, where every atom is arranged in a
definite geometrical structure—a three-dimensional lattice. Each atom is held
in a definite position—if an atom is disturbed, it experiences a restoring force
and vibrates about its equilibrium position. Thus each atom has

e 3 translational (kinetic energy) degrees of freedom,

e 3 potential energy (z, y, and z) degrees of freedom.
Thus, the atom has 6 quadratic degrees of freedom. The energy, and specific
heat, for a crystal with N atoms is

1
Berystat = 6N KT = 3NKT, ¢ = 3NF, (1.7)

which is seen empirically, as the law of Dulong and Petit (except that ¢ — 0 at
low temperature).

What about a metal such as copper? The atoms are still held in a crystal
lattice, but some of the electrons are free to migrate in a good conductor (no
restoring forces for the conducting electrons). So we expect for the specific heat

3
cth 1= 3k Natoms + §kNelectrons~ (18)
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Figure 1.1: Sketch of the behavior of the specific heat at constant volume as
a function of absolute temperature for a diatomic gas. At low temperature
only the translational degrees of freedom play a role; at room temperature, the
rotational degrees of freedom contribute, but the vibrations are frozen out.
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For a good conductor, there is of the order of 1 conduction electron per atom,

Nelectrons ~ IVatoms» (19)
SO 9
C:rtlletal ~ ikNatomsu (110)

Bu, in fact, under normal conditions we don’t see the electronic contribution to
the specific heat.

These examples show that classical mechanics and thermodynamics fail, in
an apparently unpredictable manner. The question is, how to erect a new set
of rules that do work in the atomic realm, without destroying the success of
classical physics. Perhaps the clearest indication that atomic physics cannot
be correct was provided by the apparent establishment of the nuclear atom by
Rutherford, Geiger, and Marsden (1910), who scattered alpha paricles (He nu-
clei) off nuclei and observed large deflections. In this picture, the atom consisted
of a massive nucleus with light electrons orbiting it. But this model is unstable,
since the electrons are always accelerated, and should therefore radiate electro-
magnetic energy. As they lose energy, the electrons should spiral in, and fall
into the nucleus. How long would be required for this to happen?

The power radiated by a nonrelativistic accelerated charge is given by the
Larmor formula (Gaussian electromagnetic units),

2
_2e”

where the charge of the particle is e. For an electron of mass m moving in a
circle of radius r, orbiting a nucleus of charge —e, the acceleration is

e2

a= (1.12)

b
mr?

assuming the orbit is always circular. P is the rate at which the electron loses
energy, so if E is the energy of the electron,!

_dE 14V
dt — 2dt’

(1.13)

where V is the potential energy, V = —e?/r. Putting these together we get

1de2_2e2 et
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St = St (1.15)

I This uses the virial theorem: for a circular orbit the force on the electron is mwv? /r = €2 /r2,
which means that the energy is E = mv?/2 — e?/r = —e2/2r = V/2. This is true on the
average even if the orbit is not circular.
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We integrate this from some intial radius R down to the origin, that is, the
position of the nucleus,

1 0 L a4/ 4,
gR :—/1; drr :3(77”),02 ct=§roct, (116)

for the time t required for the electron to spiral into the nucleus. Here we have
used the abbreviation

e2

_ _ —13
o= -5 =28x10"em, (1.17)

which is the so-called classical radius of the electron (in fact, as we now know
to high precision, the electron has no size). Thus
R3 (10=8 cm)?

t= = ~ 10710 1.18
4r3c 4(3 x 10~ cm)?(3 x 1010 cm/s) > (1.18)

if the initial distance of the electron from the nucleus is R = 10~ cm, a typical
atomic dimension. If this were true, matter would have disappeared long ago!
If fact, atoms are incredibly stable—they have been around since the big bang,
some 13.7 billion years, and we can deduce much longer lifetimes for atomic
stability. On the other hand, we know that accelerated electrons do radiate
in the manner given by Maxwell’s equations—electron synchrotrons, in which
electrons move in circles, produce copious radiation which is used, for example,
to study material properties. What’s different about electrons in atoms?

1.1 Appendix

The equipartition theory says for any “quadratic” degree of freedom, the corre-
sponding average energy is %kT. By quadratic degree of freedom, we mean it
contributes to the energy proportional to the square of the coordinate or veloc-
ity, as in Eq. (1.5). Consider the kinetic energy due to the motion of an atom in
one direction. Accoring to Boltzmann, the average value of this kinetic energy
is given in terms of integrals over the velocity distributions:

dv Lmo? e=Pmv*/2 o
- 2\ ffoo 2 _
(zmv®) = ™ dvepmvi/z — 33 In Z, (1.19)

where 8 = 1/kT and the partition function is

o0 2 > 2 Y
Z=1[ d —ﬁmvz/zz,/—/ dre ™ = [ == 1.2
/_Oo ve Gm | Te B’ (1.20)

(zmv?)=-—Inf=— = %ij. (1.21)

SO



