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It is evident that Wµ is translationally invariant, [Pµ,Wν ] = 0. W 2 is a Lorentz
scalar, [Jµν ,W

2], as you will explicitly show in homework. Here ǫµνλσ is the
totally antisymmetric invariant tensor,

ǫµνλσ = (gµµ′ − δωµµ′

)(gνν′ − δωνν′

)(gλλ′ − δωλλ′

)(gσσ′ − δωσσ′

)ǫµ′ν′λ′σ′

= ǫµνλσ, (1.167)

(because ǫµνλσ vanishes if any two indices are the same), where ǫ0123 = +1. In
the rest frame of a particle,

P = 0, P 0 = E = m, (1.168)

and so

W 0 =
1

2
ǫ0ijkJijPk = 0, (1.169a)

W i = −1

2
ǫijk0Jijm = m

1

2
ǫijkJjk = mJ i, (1.169b)

where the latter is the spin. Thus, the eigenvalues of W 2 are

W 2 = m2s(s+ 1). (1.170)

This means for a particle with nonzero rest mass, m2 > 0, the irreducible
representations belong to the values s = 0, 1/2, 1, . . .. For a given s, the possible
value of J3 are s3 = −s,−s+ 1,−s+ 2, . . . , s − 1, s. The massless limit has to
be taken carefully (see homework):

m = 0 : Wµ = λPµ, λ =
P · S
P 0

. (1.171)

λ is called the helicity, which is the spin projected along the direction of motion.
There are other representations of the Poincaré group, such as tachyons,

where m2 < 0, but they seem not to be realized in nature.

1.7 Plane-wave Solutions of the Dirac Equation

If ψ = eipxup, where px = pµxµ = p · x − Et, the Dirac equation becomes

(γp+m)up = 0. (1.172)

For a particle at rest, p0 = m, p = 0, this is

(1 − γ0)v = 0, (1.173)

where v = up=0 is the rest-frame spinor. This means that v is an eigenvector
of γ0 with eigenvalue +1. Because

[Σ3, γ
0] = 0, (1.174)
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we can also take v to be an eigenvector of Σ3:

Σ3vσ = σvσ , σ = ±1. (1.175)

We can obtain upσ from the rest-frame spinor vσ by a boost:

upσ = exp

[

φ e · 1

2
α

]

vσ

=

(

cosh
1

2
φ+ α · e sinh

1

2
φ

)

vσ, (1.176)

because (α · e)2 = 1. Here, the direction of the boost is given by that of the
momentum,

e =
p

|p| . (1.177)

Because

coshφ =
1√

1 − v2
=
E

m
, (1.178)

we have

cosh
φ

2
=

√

coshφ+ 1

2
=

√

E +m

2m
, (1.179a)

sinh
φ

2
=

√

coshφ− 1

2
=

√

E −m

2m
, (1.179b)

and therefore

upσ =

(

√

E +m

2m
+

α · p√
E2 −m2

√

E −m

2m

)

vσ

=
1

√

2m(E +m)
(E +m+ α · p)vσ

=
1

√

2m(E +m)
(m+ γ0E − γ · p)vσ

=
1

√

2m(E +m)
(m− γp)vσ. (1.180)

This evidently satisfies the Dirac equation (1.172):

(m+ γp)upσ ∝ (m+ γp)(m− γp)vσ = (m2 + p2)vσ = 0, (1.181)

because (γp)2 = −p2. We also note that since {vσ}, σ = ±1, span the two-
dimensional space for which γ0 = 1, we must have the projection-operator
statement

1

2
(1 + γ0) =

∑

σ

vσv
†
σ. (1.182)
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If we multiply both sides of this equation by vσ′ ,

vσ′ =
∑

σ

vσ(v†σvσ′), (1.183)

which implies that the rest-frame spinors are orthonormal,

v†σvσ′ = δσσ′ . (1.184)

A Lorentz-invariant way of writing these two results, which you will explicitly
prove in Homework, is

m− γp

2m
=
∑

σ

upσu
†
pσγ

0, (1.185a)

u†pσγ
0γµupσ′ = δσσ′

pµ

m
. (1.185b)

We also note that v∗σ is an eigenvector of γ0 with eigenvalue −1:

γ0v∗σ = −v∗σ, Σ3v
∗
σ = −v∗σ, (1.186)

because γ0 and Σ3 are imaginary. The corresponding projection operator state-
ment is

1

2
(1 − γ0) =

∑

σ

v∗σv
T
σ . (1.187)

These spinors correspond to negative-energy solutions,

u∗pσ =
1

√

2m(E +m)
(m+ γp)v∗σ, (1.188)

which satisfies
(m− γp)u∗pσ = 0, (1.189)

implying a plane wave solution of the form

ψ = e−ipxu∗pσ. (1.190)

It is the appearance of these negative-energy solutions that destroys all hope of
a wavefunction interpretation of ψ. (An example is given by the Klein paradox,
see, e.g., Bjorken and Drell.) A partial resolution of the difficulty is the Dirac
hole theory, in which all negative-energy states are filled. A vacancy (hole)
in the sea of negative energy states appears as a positive-energy antiparticle;
for electrons, the hole is a positron. However, we will not pursue this line of
thought, for a more thoroughgoing reconstruction of the theory is necessary.

A final note. Recall γ5 = γ0γ1γ2γ3 discussed earlier. Note that we can write

Σ1 = σ23 =
i

2
[γ2, γ3] = iγ2γ3, (1.191)

so
iγ5Σ1 = iγ0γ1γ2γ3iγ2γ3 = γ0γ1, (1.192)
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or generally,
γ0γ = iγ5Σ. (1.193)

Then the boost equation (1.180) becomes

upσ =
1

√

2m(E +m)
(E +m+ iγ5Σ · p) vσ. (1.194)

We can take p to be the quantization direction for Σ:

Σ · p = |p|σ =
√

E2 −m2 σ, (1.195)

where now σ is the helicity. Further, from the Homework,

iγ5σvσ = v∗−σ. (1.196)

So then we can write

upσ =
1√
2m

(√
E +mvσ +

√
E −mv∗−σ

)

. (1.197)

Left- and right-handed spinors are obtained by projecting with 1
2
(1 ∓ iγ5):

uL,R =
1

2
(1 ∓ iγ5)u. (1.198)

Note that iγ5 is a good quantum number, the chirality, if m = 0. Consider a
general Lorentz transformation,

uL,R → 1

2
(1 ∓ iγ5)

(

1 + iδω · 1

2
Σ− δv · 1

2
α

)

u

=

(

1 + iδω · 1

2
Σ ± δv · 1

2
Σ

)

uL,R, (1.199)

because α = iγ5Σ. This indeed is the correct transformation properties for the
(1/2, 0) and (0, 1/2) representations, respectively. See (1.123), (1.124).

1.8 Irreducible Representations of the Lorentz

Group

Another way to describe Lorentz transformations is the following. Associated
with any four-vector xµ is a 2 × 2 Hermitian matrix,

x =

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

= x01 + x · τ , (1.200)

where τ are the Pauli matrices. The scalar length of xµ is given by the deter-
minant of this matrix:

xµxµ = −(x0)2 + x · x = −detx. (1.201)
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We can extract xµ from the matrix x as follows:

xµ =
1

2
Tr (xτµ), τµ = (1, τ ). (1.202)

If A is any matrix with determinant unity, detA = 1, we can construct a new
matrix x̂ by the transformation

x̂ = AxA†, (1.203)

which has the same determinant as x:

det x̂ = detx, (1.204)

so the corresponding four-vector has the same length as that of xµ: x̂µx̂µ =
xµxµ. That is, A corresponds to a restricted Lorentz transformation,

SO(3, 1) = SL(2, C), (1.205)

the latter being the group of transformations induced by 2 complex matrices
with determinant 1, a “special linear” group.

The irreducible representations of the Lorentz group are given by, as a gen-
eralization of the above transformation of a vector,

ξα1...αj ;β̇1...β̇k
→ Aα1ρ1

· · ·Aαjρj
A∗

β̇1σ̇1

· · ·A∗

β̇kσ̇k
ξρ1...ρj ;σ̇1...σ̇k

. (1.206)

This belongs to the representation (1
2
j, 1

2
k), which is characterized by j undotted

indices (which transform with A) and k dotted indices (which transform with
A†). For more details on this way of proceeding see Gel’fand, Minlos, and
Shapiro, Representations of the Rotation and Lorentz Groups, Pergamon Press,
1963.

Tensors are not, in general, irreducible representations. For example, con-
sider a general second rank tensor, Aµν . It can be decomposed as follows:

Aµν = gµνA+ Fµν + T µν , (1.207)

where

T µν = T νµ, T µ
µ = 0, (symmetric and traceless) (1.208)

and
Fµν = −F νµ, (antisymmetric). (1.209)

The count of independent components is consistent:

16 = 1 + 6 + 9 = 1 + (3 + 3) + (3 × 3). (1.210)

The latter count refers to the spinorial representation:
(

1

2
,
1

2

)

⊗
(

1

2
,
1

2

)

=

(

1

2
⊗ 1

2
,
1

2
⊗ 1

2

)

= (1, 1)⊕ (1, 0) ⊕ (0, 1) ⊕ (0, 0), (1.211)

where the first term corresponds to T µν , the second and third to Fµν , and the
last to A.


