E & M Qualifier

January 14, 2010

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,
2. write only on one side of the page,

put your alias on every page,

-~ W

put the problem # on every page,

ot

start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,
8

. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. Consider a thin nonconducting disk of radius R centered on the origin
of a coordinate system, lying in the z-y plane, and carrying a surface
charge density given by

yR

0 =0——.
z? +y?

(a) {6 pts} Determine the electric field at a location 7 = zk.

(b) {3 pts} Give an approximation to your answer to part (a) that is
valid for the z >> R.

(c) {1 pts} Find the force on a charge ¢ located at a position 7 = zk.
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2. Consider a linear, homogeneous, isotropic, and non-dissipative-dielec-
tric (i.e., a dielectric where D = €¢E and e is a constant) in the shape
of a sphere of radius R with a point charge () embedded at its center.

(a) {2 pts} Find the electric displacement vector D, the electric field
E, and the polarization density P inside the dielectric.

(b) {2 pts} Find the bound charge volume density pp inside the di-
electric.

(c) {1 pts} Find the total bound charge @p on the r = R boundary
of the dielectric.

(d) {2 pts} Find the net charge (free plus bound) at the center of the
dielectric.

(e) {1 pts} Find the electric displacement vector D, the electric field
E, and the polarization density P, outside the dielectric sphere.

(f) {2 pts} Are D and E continuous at 7 = R? If not explain why.

(If you use Gaussian units you can put ¢ = 1.)
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3. A thin grounded hollow conducting sphere of radius ‘b’ is centered at
the origin. A point charge ¢ is located on the z-axis at z = a < b
INSIDE the sphere.

(a) {5 pts} Write the total potential for this system as a sum,
¢ = q)sphere + (I)q)

where @, is the potential due to the point charge and ®gppere (in
spherical polar coordinates) is the appropriate linear combination
of Legendre polynomials Py(cos(f)). Evaluate the coefficients of
the Py(cos(6)) in the ®gppere expansion. Recall that the Legendre
polynomials are independent orthogonal functions satisfying

1
2
</— Pg(.’l})Pgl (CL‘) dr = 2%+ 1 (5@[/

1

and

Z ((“m Py(cos(7))

Ir— r’|
where 7y is the angle between the two directions r and r'.

(b) {5 pts} Show that your expression for ®sppere is equivalent to the
potential of a point charge. Where is the point charge located and
what is it’s charge?
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The Homopolar Generator consists of a flat copper disk of radius b and
thickness ¢, mounted on an axle of radius @, which mechanically rotates
the disk with angular speed w in the presence of an orthogonal mag-
netic induction B. A stationary contact ring with inner radius b and
negligible resistance surrounds the rotating disk making good electri-
cal and frictionless contact with it. As shown in the figure, the closed
electrical circuit consists of the disk and a load resistor R connected
by wires between the axle and the stationary contact ring. (Assume
the load resistor R is much greater than the resistance of the disk, the
contact ring, and the wires.) A constant magnetic induction B per-
pendicular to the disk (parallel to the rotation axis) exists between the
radii a and b and is zero elsewhere in the circuit.

(a) {4 pts} Find the current I that flows in the circuit as a function
of B,a,b,w, and R.

(b) {2 pts}What is the magnitude of the current density J(r) in the
rotating disc. '

(c) {2 pts} What torque would you have to apply to the rotating
wheel to keep w from slowing down.

(d) {2 pts} If o is the conductivity of copper and ¢ is the thickness of
the disk, find the electrical resistance Ry of the disk between the
radii @ and b. Recall that the resistance of a small length A¢ of
conducting material with cross sectional area Ais AR = Al/(dA).
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Reflected wave

Incident wave
-

€1

8

Transmitted wave

€2

5. A plane-polarized harmonic (e™*) plane electromagnetic wave travel-
ing to the right in a homogeneous dielectric medium described by an
dielectric constant €, strikes a second homogeneous dielectric material
described by dielectric constant e, > €; (see the figure). Assume that
both materials have the same magnetic permeability ;o and that the
incidence angle is 0° (1.e., the wave is traveling perpendicular to the
junction). Assume the incoming wave is polarized in the & direction
and that its electric field amplitude is Fy, i.e., assume the incoming
electric field is the real part of

(a)

E = By ) ¢,

{3 pts} Give the magnetic induction B associated with the above
incoming wave. Make sure your wave satisfies Maxwell’s equa-
tions, e.g., give k as a function of w, the direction of B, and the
amplitude of B as a function of Ej.

{1 pts} Give similar expressions for the E and B components
of the reflected and transmitted waves. Use Ej and Ej for the
respective amplitudes of reflected and transmitted waves.

{2 pts} In general, what conditions must be satisfied at the junc-
tion between two materials by the electromagnetic fields E, B, D,
and H, if Maxwell’s equations are to be satisfied?

{2 pts}Apply these junction conditions to the combined incom-
ing, reflected, and transmitted wave to compute Ej and Ej as
functions of Ey and the two dielectric constants €; and e,.

{2 pts} Evaluate the time averages of the Poynting vectors of the
incident, reflected, and transmitted waves. Recall that

S=ExH, (SI)

1
= —E . ;
S po x H (Gaussian)

The sum of the magnitudes of the reflected and transmitted time
averaged Poynting vectors should equal the magnitude of the in-
cident wave’s time averaged Poynting vector.
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6. Maxwell’s equations in 4 dimensions

(a) {2 pts} Write the Maxwell equations in the absence of polarizable
materials using 4-vector notation, making use of the field strength
tensor Fj,.

(b) {4 pts} Show that the equations of part (a) reduce to the usual
form of Maxwell’s equations in 3-vector notation.

(c) {2 pts} The Lagrangian density of the EM field is given by

1
L= g (D)
or )
L= _1—6;FWF“V' (Gaussian)

Recall that all repeated Greek indices are summed over 4-
dimensions (1 time and 3 space). Show that the Lagrangian
density is invariant under a gauge transformation A, — A, =
A, + 0,0(x), where « is an arbitrary function of spacetime z =

(ct, Z).
(d) {2 pts} If we add an interaction term £ — £ + AL where
AL = j#A,, s
or .
AL = zj“A”, (Gaussian)

to the Lagrangian— where j* is some spatially bounded and con-
served 4-current density— how does the action I = [ Ld*r change
under a gauge transformation and do the resulting equations of
motion change?
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