Quantum Mechanics
Qualifying Exam—January 2010

Notes and Instructions:

e There are 6 problems and 7 pages.
e Be sure to write your alias at the top of every page.

e Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

You must show all your work.

Possibly useful formulas:
Pauli spin matrices:
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One-dimensional simple harmonic oscillator operators:
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Angular momentum raising and lowering operators:
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PROBLEM 1: The Delta-Function Potential
Let us consider a single particle of mass m moving in one dimension with the Hamiltonian
H=T+V(x),
where the kinetic energy is
2 2 2
the potential energy is
V(z) = Vo d(z),
and d(z) is the Dirac delta function.

(a) [2 points] Find an expression for the discontinuity of the derivative of the wave function
at x = 0.

(b) [3 points| Find the ground state wave function.
(c) [2 points] Find the ground state energy.

(d) [3 points] Find the expectation value for the kinetic energy, (7).
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PROBLEM 2: Hydrogenic Atoms with One Electron

In terms of the first Bohr radius, ag = h/(cam.), where « is the fine-structure constant,
the ground-state eigenfunction of a hydrogen atom is

-r/an

1/)1,0,0(7', 97 QO) = €

ad

\/é) [3 points] Evaluate the probability of finding an electron in the ground-state of a hy-
drogen atom in the classically forbidden region. The classically forbidden region is the
region of space where the classical kinetic energy is negative.

(b) [4 points] For the ground state, evaluate the uncertainty in the Cartesian coordinate z
and the uncertainty in the corresponding component of the linear momentum, p,. Hint:
You need not use the explicit form of the operator for the linear momentum to evalu-
ate Ap,.

(c) [3 points] Show explicitly that the product of your uncertainties, Az Ap,, is consistent
with the Heisenberg uncertainty principle.
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PROBLEM 3: Time-Dependent Perturbation Theory
Consider a non-relativistic particle of mass m and charge ¢ with the potential energy:
1 2

A homogeneous electric field £(t) directed along the x-axis is switched on at time ¢t = 0.
This causes a perturbation of the form

H =—qXE&()
where £(t) has the form

E(t) = &Ee T

where £, and 7 are constants.

The particle is in the ground state at time ¢t < 0. This problem will deal with calculating
the probability that it will be found in an excited state as t — oc.

The probability that the particle makes a transition from an initial state i to a final state
f is given by:

t AT
[ at (gl e

1
Pfi(t, to) = ﬁf

where the particle originally is in state ¢; and finally in state ¢;.
(a) [2 points] In terms of known quantities, what is the value of wy; ?
(b) [2 points] How many excited states can the particle make a transition to?

(c) [6 points] Derive an expression for the probability that the particle will be found in any
allowed excited state as { — oo.






PROBLEM 4: Spin Physics

Spin-1/2 objects generally have magnetic moments that affect their energy levels and
dynam_ips in magnetic fields. The interaction between the magnetic moment and a magnetic
field, B can be written as:

H=-uS B (1)
where S is the spin of the particle
= h
S = 5’5 2)

where the o;’s are Pauli matrices.
In this problem we’ll be using as our basis the eigenstates of S,

with eigenvalues :t%.

(a) [1 point] If a particle is in the spin state |+), compute the expectation values of S, S,
and S,.

(b) [1 point] If a particle is in the spin state |+), what are the uncertainties of S;, S, and
S,? (AS? = (S?)—(S;)?.) Explain the physics of your results in terms of the eigenvalues
and measurement probabilities of the spin in the x, y, and z directionsy h (k-

the spin in 1.

(c) [3 points] A large ensemble of particles are all prepared to be in the spin state |+) at
time ¢t = 0 when a magnetic field in the x-direction is switched on, B = Byé,. Solve for
the time-dependent probabilities, Py(t), of measuring S, to be £h/2.

(d) [2 points] For the experiment described in part (c), what are the probabilities for mea-
suring S; to be +h/2? Explain the differences between the results for S, and S;.
Bo

(e) [3 points] Consider the case where the magnetic field is B = % (é; + €;). In this case

what is the time-dependent probability of measuring S, to be +7/27
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PROBLEM 5: Two Level System

Consider a quantum system that can be accurately approximated as having two energy
levels |+) and |—) such that

Hy|t) = +e|£),

where € is energy.
When placed in an external field, the eigenstates of Hy are mixed by another term in the
total Hamiltonian

VI) = o).

For simplicity, we choose ¢ to be real.

(a)

(b)

()

[1 points] Using the states |[+) and |—) as your basis states, write down the matrix
representations for the operators Hy and V.

[3 points] What will be the possible results if a measurement is made of the energy for
the full Hamiltonian H = Hy + V?

[2 points] Experiments are performed that measure the transition energies between eigen-
states. Without the external field (6 = 0) it is found that the transition energy is 4 eV
and with the external field (§ # 0) the transition energy is 6 eV. What is the coupling
between the states |£), J, in this case?

[2 points] We can write the eigenstates of the total Hamiltonian in terms of two energy
levels |+) as

|1) = cos(fq)|+) + sin(6;)]-)
|2) = cos(fy)|+) + sin(b)]—) .

Letting 6 /¢ = C, solve for the angles 6; and 6, in terms of C.

[2 points] Consider an experiment where the two-level system starts in the eigenstate of _

HO with eigenvalue —e. A very weak field is turned on so that ¢ <« 1. To the lowest

order in C, what is the probability of measuring a positive energy for the system when
0 # 07
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PROBLEM 6: Hyperfine Splitting

The hyperfine splitting in hydrogen comes from a spin-spin interaction between the electron
and the proton. The total Hamiltonian can be written as
2
Pp PZ 62

H = = 4 H
omy | om, 7 HF

where Hyp = AS; . 5’;,, and A is a real constant.

(a) [1 points] What are the spin quantum numbers s and m; of the electron?
(b) [1 points] What are the spin quantum numbers s and m; of the proton?

(c) [1 points] What are the spin quantum numbers s and m; of the combined electron-proton
system?
B
. X
T n (

d) [5 points] Diagonalize Hyr in the total S=25+ 5’;, basis and compute the energy
eigenvalues.

(e) [2 points] Write an expression for the energy of a photon that would be emitted from a
hyperfine transition in terms of A, A, and any other relevant constants.
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