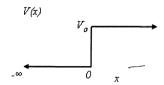
QUANTUM QUALIFIER EXAM, JANUARY 2007

					•
-		,			



Consider the step potential shown in the figure.

a) [1 pts] Consider a particle traveling from $x = -\infty$ to the right with an energy E. The appropriate wavefunction for this particle is given by

$$\phi = \begin{cases} e^{ik_L x} + Ae^{-ik_L x} & \text{for } x < 0 \\ Be^{ik_R x} & \text{for } x > 0 \end{cases}$$

Give expressions for k_L and k_R and define any undefined parameters/constants given in your expression.

- b) [3 pts] For the case that $E > V_o$, use appropriate boundary conditions to find the coefficients A and B.
- c) [2 pts] For the case that $E > V_o$, find the probability that the particle will be reflected.
- d) [2 pts] For the case that $E > V_o$, the probability that the particle will be transmitted is given by T = 1 - R. Determine and explain the physical meaning of the ratio B/7/T.?

2

e) [2 pts] What is the probability for reflection when $E < V_o$?

			,

$$\phi = \begin{cases} e^{iK_{L}X} + A \bar{e}^{iK_{L}X} & \times < 0 \\ B e^{iK_{R}X} & \times > 0 \end{cases}$$

$$K_L = \frac{2mE}{\hbar^2}$$
 $K_L = \frac{2m(EPV_0)}{\hbar^2}$

$$\begin{bmatrix}
-\frac{t^2}{am}\frac{d^2}{dx^2} + V(x)\end{bmatrix}\psi = E\psi$$

$$\frac{d^2}{dx^2} = -\frac{2m(E-V_0)}{t^2}$$

b)
$$\Psi_{\underline{\Gamma}}(x=0) = \Psi_{\underline{\Gamma}}(x=0)$$

$$\Rightarrow$$
 A = B-1

$$\Rightarrow A = \frac{K_L - K_R}{K_R}$$

b)
$$\Psi_{I}(x=0) = \Psi_{II}(x=0)$$

$$\Rightarrow 1 + A = B$$

$$\Rightarrow A = B - 1$$

$$\Rightarrow A = \frac{|K_L|^{|K_L|}}{|K_R|} = \frac{|K_L|^{|K_L|}}{|K_R|} = \frac{|K_R|^{|K_R|}}{|K_R|} = 0$$

$$\Rightarrow |K_L| = |K_R|^{|K_R|}$$

c)
$$R = \frac{|B|^2}{|K_L + K_R|^2} = \left(\frac{|K_L - K_R|^2}{|K_L - K_R|^2}\right)^2$$

d)
$$T = 1 - R = \frac{(\kappa_L - \kappa_R)^2 - \kappa_L^2}{(\kappa_L - \kappa_R)^2} = \frac{\kappa_R^2 - 3\kappa_L \kappa_R}{(\kappa_L - \kappa_R)^2} \frac{\kappa_L}{(\kappa_L - \kappa_R)^2} = \frac{|B|^2}{|A|^2 - |B|^2} = \frac{|A|^2}{|A|^2 - |B|^2} = \frac{|A$$

()
$$R = \frac{|A|^2}{1} = \frac{(K_L - K_R)^2}{(K_R)^2} = \frac{(\lambda_L - K_R)^2}{(K_R)^2} = \frac{(\lambda_L - K_R)^2}{(K_R)^2} = \frac{(\lambda_L - K_R)^2}{(K_R)^2} = \frac{(\lambda_L - K_R)^2}{(\lambda_R)^2} = \frac{(\lambda_L - K_R)^2}{(\lambda_L - K_R)^2} = \frac{(\lambda_L -$$

$$J_{trans} = \frac{\hbar}{a_{im}} \left[B^{2} e^{-i\kappa_{R}x} (i\kappa) e^{i\kappa_{R}x} - |B|^{2} e^{i\kappa_{R}x} (-i\kappa_{R}) e^{i\kappa_{R}x} \right]$$

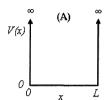
$$= \frac{\hbar |B|^{2}}{a_{im}} a_{i\kappa_{R}} = \frac{\hbar |\kappa_{R}|B|^{2}}{m}$$

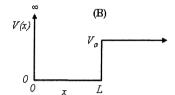
$$J_{inc} = \frac{\hbar}{a_{im}} \left[e^{i\kappa_{L}x} (i\kappa_{L}) e^{i\kappa_{L}x} - e^{i\kappa_{L}x} (-i\kappa_{L}) e^{i\kappa_{R}x} \right]$$

$$= \frac{\hbar |\kappa_{L}|}{m}$$

$$= \frac{\hbar |\kappa_{L}|}{m}$$

$$\Rightarrow \frac{|B|^2}{T} = \frac{K_L^2}{K_R^2} = \frac{E}{(EV_0)}$$





- a) [2 pts] Calculate the energy eigenvalues for a particle of mass m in the one-dimensional infinite well shown in Figure A.
- b) [4 pts] For the time-independent Schrödinger Equation corresponding to potential (B), find a transcendental equation in E giving the eigenenergies in terms of V_o, L, m , and \hbar
- c) [4 pts] For the time-independent Schrödinger Equation corresponding to potential (B), what is the smallest value of V_o that gives one bound state? What is the smallest value of V_o that gives two bound states?

ŧ				

Jan-2007

PROBLEM 3

Consider a quantum mechanical system that consists of two identical spin 1/2 particles that are fixed in space, separated by a distance d. Particle 1 is at the origin $(\vec{r_1} = \vec{0})$ whereas particle 2 is at $\vec{r_2} = d \ \hat{e_z}$. Each particle has a magnetic moment

 $\vec{\mu}(j) = rac{g\mu_o}{\hbar} \vec{S}(j), \quad j = 1, 2$

and a g-factor g=2. $\vec{S}(j)$ is the spin operator of the j^{th} particle. Throughout this problem we will use the basis states $|1\rangle = |+,+\rangle$, $|2\rangle = |+,-\rangle$, $|3\rangle = |-,+\rangle$, and $|4\rangle = |-,-\rangle$, where these are the usual states written in terms of the z-components of the particles' spins.

- a) [2pts] First consider what happens if we place the particles in an external magnetic field $\vec{B} = B\hat{e}_z$. Write the matrix representation for the Hamiltonian of the system $H_o = -\vec{\mu} \cdot \vec{B}$ in the $|i\rangle$, i = 1, 2, 3, 4 basis given above, considering only the interaction between the spins and the magnetic field. What are the energy eigenstates and eigenvalues for the system? Draw an energy-level diagram.
- b) [3pts] We know, however, that the magnetic moment of each particle will create a magnetic field that the other particle will feel. The dipole field from particle 1 at particle 2 is (classically)

$$\vec{B}_{21} = \frac{1}{d^3} (3\mu_z(1)\hat{e}_z - \vec{\mu}(1))$$

so that the interaction Hamiltonian between the two particles is

$$\begin{array}{rcl} \hat{H}' & = & -\vec{\mu}_2 \cdot \vec{B}_{21} \\ & = & \frac{g^2 \mu_o^2}{\hbar^2 d^3} \left(-3S_z(1)S_z(2) + \vec{S}(1) \cdot \vec{S}(2) \right). \end{array}$$

Compute the action of the interaction Hamiltonian on each of the basis states. In other words, calculate $\hat{H}'|i>$ for i=1,2,3,4.

Hint: Use the usual angular momentum raising and lowering operators

$$\hat{S}^{\pm} = \hat{S}_x(j) \pm i\hat{S}_y(j), \ j = 1, 2$$

- c) [2pts] Write the total Hamiltonian, $\hat{H} = \hat{H}_o + \hat{H}'$ as a matrix in the $|i\rangle$ basis.
- d) [3pts] Find the eigenstates and eigenvalues of this total Hamiltonian and draw the energy level diagram as a function of the magnetic field strength.

			,	
,		•		

 $\forall \lambda = \frac{\mu_0 B}{2} > = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$|\lambda = -\frac{\mu B_0}{a}\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\left| \lambda = 0, 2 \right\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

b)
$$H' = -\overline{\mu_{1}} \cdot \overline{Ba_{1}} = \frac{g^{2}\mu_{0}^{+}}{\frac{4^{2}d^{3}}{4^{2}d^{3}}} \left(-3 s_{2}(1) s_{2}(2) + \overline{S}(1) \cdot \overline{S}(2)\right)$$

$$= \alpha \left\{-3 s_{12} s_{22} + 5_{12} s_{22} + 5_{12} s_{22} \right\}$$

$$5_{1} = 5_{1} + 5_{1$$

$$H'_{13} = \alpha \left\{ -2S_{12}S_{a2} + \frac{1}{a}\left(S_{1+}S_{a-} + S_{1-}S_{a+}\right)^{2} | 1 - + \right\}$$

$$= 4\alpha \left\{ \frac{\hbar^{2}_{1}}{a} + \frac{\hbar^{2}_{1}}{a} \sqrt{\frac{3}{4} - \left(-\frac{1}{a}\right)\left(-\frac{1}{a} + 1\right)} \sqrt{\frac{3}{4} - \frac{1}{a}\left(\frac{1}{a} - 1\right)} | 1 + - \right\}$$

$$= \alpha \left\{ \frac{\hbar^{2}_{1}}{a} | 1 - + \right\} + \frac{\hbar^{2}_{1}}{a} | 1 + - \right\}$$

$$H'|4\rangle = \chi_{1}^{2} - \lambda_{1}^{2} S_{2} + \frac{1}{\lambda} (S_{1+} S_{2-} + S_{4-} S_{2+}) - \rangle$$

$$= \chi_{1}^{2} - \frac{\pi^{2}}{2} |--\rangle$$

$$H' = \langle 1 | \langle ++1 \rangle | - | - | \rangle$$

$$\langle 2 | \langle +-1 \rangle | 0 \rangle$$

$$\langle 2 | \langle -+1 \rangle | 0 \rangle$$

$$\langle 4 | \langle --1 \rangle | 0 \rangle$$

$$\langle 4 | \langle --1 \rangle | 0 \rangle$$

$$\langle 4 | \langle --1 \rangle | 0 \rangle$$

$$\langle 4 | \langle --1 \rangle | 0 \rangle$$

Consider a two state system described by the time-dependent Hamiltonian

$$H = \left(\begin{array}{cc} 0 & \frac{\beta}{2}e^{i\omega t} \\ \frac{\beta}{2} * e^{-i\omega t} & \hbar \omega_1 \end{array} \right)$$

with

$$\vec{v}(t) = \left(\begin{array}{c} v_o(t) \\ v_1(t) \end{array} \right).$$

This is the Hamiltonian of a spin 1/2 particle in a strong magnetic field in the \hat{z} direction combined with a rotating magnetic field in the x-y plane and models many NMR experiments. To analyze this system, it is convenient to write $\vec{v}(t)$

in terms of the time dependent vector $\vec{s}(t) = \begin{pmatrix} s_o(t) \\ s_1(t) \end{pmatrix}$ so that

$$\vec{v}(t) = \left(egin{array}{c} s_o(t) \\ s_1(t)e^{-i\omega t} \end{array}
ight).$$

For the case that $\beta = 0$ and $\omega = \omega_1$ (no rotating magnetic field), $s_o(t)$ and $s_1(t)$ are constant. The time dependence of $s_o(t)$ and $s_1(t)$ allows us to determine the probability that the rotating magnetic field induces a spin flip.

a) [1pt] Show that for $\beta=0,\,\vec{v}(t)$ statisfies the time-dependent Schrodinger equation

$$H\vec{v}(t) = i\hbar \frac{\partial \vec{v}(t)}{\partial t}.$$

when when $s_o(t)$ and $s_1(t)$ are constant and $\omega = \omega_1$.

b) [3pts] For the case that β is a nonzero constant, use Schrödinger's equation for $\vec{v}(t)$ to show that $\vec{s}(t)$ evolves according to the effective Hamiltonian H' with

$$H' = \left(\begin{array}{cc} 0 & \frac{\beta}{2} \\ \frac{\beta}{2}^* & \hbar \Delta \omega \end{array} \right)$$

and

$$\Delta\omega=\omega_1-\omega.$$

- c) [3pts] Assuming the system starts in the state $\vec{s}(t) = \binom{0}{1}$ at t = 0, find $\vec{s}(t)$.
- d) [3pts] Assuming the system starts in the state $\vec{s}(t) = \binom{0}{1}$ at t = 0, find the probability of finding the system in the state $\binom{1}{0}$ as a function of time.

			r

A particle of mass m is confined to a two-dimensional plane. The potential energy of the particle is

$$V(\rho) = \begin{cases} 0 & \rho < \rho_o \\ \infty & \rho \ge \rho_o, \end{cases}$$

where ρ is the radial coordinate of plane polar coordinate (ρ, φ) . This potential confines the particle to the region of space $\rho \leq \rho_o$. The particle in this "circular square well" is the quantum analog of a marble on the head of a drum. The stationary-state Hamiltonian eigenfunctions of the particle are $\Psi_{n,m_\ell}(\rho,\varphi)$ with eigenenergies E.

a) [4pts] Write down a second-order differential equation for the radial function $R_{n,m_{\ell}}(\rho)$ in the bound-state Hamiltonian eigen functions

$$\psi_{n,m_{\ell}}(\rho,\varphi) = R_{n,m_{\ell}}(\rho)\Phi_{m_{\ell}}(\varphi),$$

where $\Phi_{m_{\ell}}(\varphi)$ is an eigenfunction of the orbital angular momentum operator $\hat{L} = -i\hbar\partial/\partial\varphi$. Write down and justify the boundary conditions that physically admissible solutions to your differential equation must satisfy, and write down the normalization integral for the radial functions.

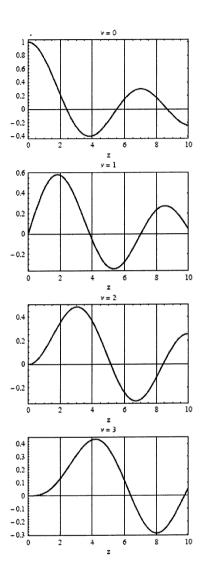
- b) [2pts] What, if anything, can you conclude from your differential equation about the degree of degeneracy of the bound-state energies $E_{n,m_{\ell}}$. Justify your answer.
- c) [2pts] Derive an equation for the bound-state energies $E_{n,m_{\ell}}$ in terms of the zeros $\varsigma_{n,\nu}$ of the cylindrical Bessel function of the first kind, $J_{\pm\nu}(z)$. (See the hint below.)
- d) [2pts] Estimate the energies of the *lowest three* bound states of the cylindrical square well. Express your answers in terms of fundamental constants, the mass m, and the well radius ρ_o .

Hint: The cylindrical Bessel functions are solutions of Bessel's equation

$$\left[z^{2} \frac{d^{2}}{dz^{2}} + z \frac{d}{dz} + (z^{2} - \nu^{2})\right] J_{\pm\nu}(z) = 0$$

The so-called cylindrical Bessel functions of the first kind, $J_{\pm\nu}(z)$, are regular at the origin and normalizable. These functions oscillate with increasing z and have an infinite number of nodes, i.e., values for which $z = \varsigma_{n,\nu} > 0$ at which $J_{\pm\nu}(z) = 0$; these nodes are indexed by n = 1, 2, ... The figure shows the first four cylindrical Bessel functions.

			,
		. ,	
•			



First four cylindrical Bessel functions of the first kind (for use in problem 5.)

	`	

Consider an ensemble of identical particles whose state space is spanned by the basis

$$|e_1
angle = \left(egin{array}{c} 1 \ 0 \ 0 \end{array}
ight), \quad |e_2
angle = \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight), \quad |e_3
angle = \left(egin{array}{c} 0 \ 0 \ 1 \end{array}
ight)$$

Assume that the Hamiltonian H and an observable A are represented by

$$H = \hbar \omega_o \begin{pmatrix} 0 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
, and $A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

The eigenvalues of H are $\hbar\omega$, $2\hbar\omega$, and $-\hbar\omega$ with eigenvectors given by

$$|\hbar\omega
angle = rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \ 0 \ -1 \end{array}
ight), \quad |2\hbar\omega
angle = \left(egin{array}{c} 0 \ 1 \ 0 \end{array}
ight), \ \ {
m and} \ \ |-\hbar\omega
angle rac{1}{\sqrt{2}} \left(egin{array}{c} 1 \ 0 \ 1 \end{array}
ight)$$

The eigenvalues of A are -1, 1, and 1 with eigenvectors given by

$$|a_{-1}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \ |a_{1,1}\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ |a_{1,2}\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

For all times t < 0, the particles are in a state given by

$$|\psi_o\rangle = \frac{1}{2} \left(\begin{array}{c} 1 \\ \sqrt{2} \\ -1 \end{array} \right) \ .$$

- a) [1pt] Write down an expression for the time evolution operator $U(t, t_o = 0)$ in Dirac notation
- b) [2 pt] Determine $|\psi(t)\rangle$, the state vector at an arbitrary time.
- c) [2 pt] What is the probability that a measurement of A at a time t=0 yields a=-1?
- d) [2 pt] What is the probability that a measurement of A at an arbitrary time t yields a value a=-1?
- e) [3 pt] Assume that at t=0 the operator A is observed to be 1. What is the probability that a short time later $(0 < t << 1/\omega)$, the eigenenergy of the system is observed to be $-\hbar\omega$?

			* /
			W. 1

$$(-iE; (t-t)) = \sum_{E_i} |E_i\rangle \langle E_i| \ell$$

$$-ia\omega t$$

$$= |E = a\pi\omega\rangle \langle E = a\pi\omega| \ell + |E = \pi\omega\rangle \langle E = \pi\omega| \ell$$

$$+ |E = -\pi\omega\rangle \langle E = -\pi\omega| \ell$$

$$|\psi(0)\rangle = \frac{1}{2} \begin{pmatrix} 1 \\ \sqrt{2} \\ -1 \end{pmatrix} = \begin{pmatrix} \sqrt{4} \\ \sqrt{2} \\ -\sqrt{2} \end{pmatrix} = \frac{1}{\sqrt{2}} |E = \pi \omega\rangle + \frac{1}{\sqrt{2}} |E = \pi \omega\rangle$$

$$| \Psi(t) \rangle = U(t,0) | \Psi(0) \rangle = \frac{-i\omega t}{\sqrt{a}} | E = \pi \omega \rangle + \frac{e}{\sqrt{a}} | E = 2\pi \omega \rangle$$

$$(1) \qquad |\psi(0)\rangle = \begin{pmatrix} y_2 \\ y_{12} \\ -y_2 \end{pmatrix} = \frac{1}{2}|e_1\rangle + \frac{1}{\sqrt{2}}|e_2\rangle - \frac{1}{2}|e_3\rangle$$

$$|a=-1\rangle = \frac{1}{\sqrt{2}}\left[|e_1\rangle - |e_2\rangle\right]$$

$$|Q=1,1\rangle = \frac{1}{\sqrt{2}} \left[|e_1\rangle + |e_2\rangle \right]$$

$$|\alpha=1,2\rangle = |\ell_3\rangle$$

$$|\psi(0)\rangle_{|\alpha\rangle} = \{|\alpha = -1\rangle \ \langle \alpha = -1| + |\alpha = 1, 1\rangle \ \langle \alpha = 1, 1| + |\alpha = 1, 2\rangle \langle \alpha = 1, 2|\}$$

$$P(\alpha=-1) = \frac{|\langle \alpha=-1| \psi(0) \rangle|^2}{\langle \psi(0)| \psi(0) \rangle}$$

$$\langle \psi(0)|\psi(0)\rangle = (\frac{1}{2} \frac{1}{\sqrt{2}} - \frac{1}{2}) (\frac{1}{2}) = \frac{1}{4} + \frac{1}{2} + \frac{1}{4} = 1$$

$$\langle a = -1 | \psi(0) \rangle = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) = \left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right)$$

$$P(a=1) = \frac{1}{4} \left(\frac{1}{\sqrt{2}} - 1\right)^2 = \frac{(-\sqrt{2})^2}{8} = \frac{3-2\sqrt{2}}{8}$$
 77

$$|\psi(\varepsilon)\rangle = \frac{e^{i\omega t}}{a} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{e^{i\omega t}}{\sqrt{2}} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -i\omega t/2 \\ -i\omega t/2 \\ -i\omega t/2 \end{pmatrix}$$

$$\langle a=-4|\psi(t)\rangle = (\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} 0) \left(\frac{1}{2} e^{i\omega t}\right) = \frac{1}{2\sqrt{2}} e^{i\omega t} - \frac{1}{2} e^{i\omega t}$$

$$\langle \psi(t)|\psi(t)\rangle = \left(\frac{1}{2}e^{i\omega t}\right)\left(\frac{1}{2}e^{i\omega t}\right)\left(\frac{1}{2}e^{i\omega t}\right)\left(\frac{1}{2}e^{i\omega t}\right)\left(\frac{1}{2}e^{i\omega t}\right)$$

$$P(t)(a=-1) = \left| \frac{1}{2\sqrt{2}} e^{-i\omega t} - \frac{1}{2} e^{-i2\omega t} \right|^{2}$$

$$= \left(\frac{1}{2\sqrt{2}} e^{-i\omega t} - \frac{1}{2} e^{i2\omega t} \right) \left(\frac{1}{2\sqrt{2}} e^{i\omega t} - \frac{1}{2} e^{i2\omega t} \right)$$

$$= \frac{1}{8} - \frac{1}{4\sqrt{2}} e^{i\omega t} - \frac{1}{4\sqrt{2}} e^{i\omega t} + \frac{1}{4}$$

$$= \frac{3}{8} - \frac{1}{2\sqrt{2}} \cos \omega t$$

$$\frac{1}{2\sqrt{2}}(1-1) = \frac{1}{\sqrt{2}}(1-1) + \frac{1}{2\sqrt{2}}(1-1) + \frac{1}{2\sqrt{2}}($$

$$|\psi(0)\rangle = \frac{1}{2\sqrt{2}} (1-\sqrt{2}) |0=-1\rangle + \frac{1}{2\sqrt{2}} (1+\sqrt{2}) |0=-1/2\rangle = \frac{1}{2} |a=-1/2\rangle$$

$$|\psi(0)\rangle = \frac{1}{2\sqrt{2}} (1-\sqrt{2})^2 = \frac{(1-\sqrt{2})^2}{8}$$

e)
$$|\psi(0)\rangle = |\alpha=-1\rangle + |\alpha=1,1\rangle + |\alpha=1,2\rangle$$

-				
		×		
	,			