Electrodynamics Qualifier Examination

August 21, 2008

General Instructions: In all cases, be sure to state your system of
units. Show all your work, write only on one side of the designated paper,
and if you get stuck on one part, assume a result and proceed onward. The
points given for each part of each problem are indicated. Each problem
carries equal weight.






1. In relativistic notation, the field strength tensor F*” is given by F* =
OHAY — 9" A* in terms of the 4-vector potential A* = (¢, A). Maxwell’s
equations become

O, F*¥ =EkJV, J*=(cp,J),

and k is a constant depending on the system of units adopted.

a) 1 pt.
b) 2pts.

c) 1 pt.

d) 2pts.

e) 2pts.

f) 2pts.

Write Maxwell’s equations in terms of A¥.

Show that the field strength tensor is invariant under a gauge

transformation,
AP — A'F = AP 4 OH ),

where A is any function of space and time.

How does the form of Maxwell’s equations found in part a) change
if we exploit the gauge freedom to impose the Lorenz condition

B, AF =07

Show that further gauge transformations are possible provided X’

satisfies
)\ = 8“6”)\' =0.

In empty space, J* = 0, impose the further condition A° = 0
and rewrite the Lorenz gauge condition to obtain the radiation or
Coulomb gauge condition. Is this gauge condition Lorentz invari-
ant?

Show that the plane-wave function
At (z) = aeP“e*(p),

where p* = (w/c, k) is the propagation or wave vector, z# =
(ct,x), z - p = z,p", a is a constant, and € is the polarization
4-vector, satisfies the Lorenz gauge condition provided e satisfies
a particular condition. What is this condition? If this condition is
satisfied, show that the empty-space Maxwell equation is satisfied
provided there is a constraint on p? = ptp,. What does this
constraint imply about the rest mass of the photon?
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2. Consider a monochromatic plane electromagnetic wave of frequency w
propagating in a non-magnetic dielectric (with index of refraction ny),
traveling in the z direction and polarized in the z direction, which
impinges normally upon a second non-magnetic semi-infinite dielectric
material (with index of refraction ny), where the boundary between the
two media occurs at z = 0, as shown in Fig. 1. The incident electric
field is

E;(z,t) = & Eore**),

There are no free charges or currents in either medium.

ny o

“l

Yy z

z=0

Figure 1: Plane wave normally incident on a surface separating two dielectric
materials at 2z = 0. The medium in the the region z < 0 has index of
refraction n; while the material in the region z > 0 has index of refraction

Nog.

a) 1 pt.
b) 1 pt.
c) 1 pt.

d) 2pts.

e) 2pts.

Use Maxwell’s equations to determine the relation between k£ and
w in each region.

Use Maxwell’s equations to determine the incident magnetic field,
B(z,t), using the result of part b).

What are the forms of the reflected wave Eg(z,t), Br(z,t) (2 < 0),
and of the transmitted wave Er(z,t), Br(z,t) (z > 0)7

Apply the appropriate boundary conditions at the interface be-
tween the two media to obtain the equations determining the re-
flected amplitudes FEyr and Byr and the transmitted amplitude
FEor and Byr in terms of Ey;.

Solve these equations for the reflection and transmission coeffi-
cients, r = Egr/Eor, t = Eor/FEo; in terms of the indices of re-
fraction of the two media.






F-o8

f) 2pts. Show that the averaged energy flux in a plane wave of amplitude
Ep moving in a medium with index of refraction n is given by
(Gaussian units)

C
S = 877L,E0|2

Show that the relative reflected and transmitted energy fluxes are

. SR - (nl —’I’L2>2 T = ST _ 4’I’L17L2

5 \nmi4ns TS (mng)?

R

g) 1 pt. Show that R+ T = 1. Why is this as expected?
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3. A relativistic particle of rest mass m and charge e is moving in a uniform
(constant and static) magnetic field B. The equations of motion for
the particle momentum p and its energy E are (Gaussian units)

dp e dE
E‘E = EV X B, _El-t—/— 0.

a) 1 pt. Why is the particle energy conservéd?

b) 1 pt. Express p in terms of m and the particle velocity v, and E in
terms of m and v.

c) 3pts. Show that these equations of motion can be written as

dv—wXV
dt ’

and express w in terms of e, F/, and B. This says that the velocity
vector precesses with angular velocity w.

. Now suppose the motion is confined to the plane perpendicular
to B, that is, B L v. Then show that the particle moves with

L
N—
(98]
T
o+
w

terms of v, F, e, and B.

e) 2pts. Now give an equation relating the magnitude of the particle mo-
mentum p to the radius R found in part d). Thus show that a
measurement of the radius of the orbit determines the particle mo-
mentum. If the velocity of the particle is independently known,
we can then determine the mass m of the particle, according to
the relation given in part b).
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Figure 2:

Hollow cylinder (radius a and length [) containing uniform gas

flowing along the axis, the z direction, with velocity v. Protons are injected
into the cylinder with velocity V' parallel to the axis. As a result of magnetic
forces, they are brought to a focus at a point on the z axis a distance p far
from the cylinder, p > |.

4. Consider a hollow cylinder of radius a and length [ filled with a com-
pletely ionized gas of uniform charge density p which is moving parallel
£ to the axis of the cylinder with velocity v.

a) 3pts.

b) 3pts.

c) 2pts.

d) 2pts.

Find the magnetic field (magnitude and direction) at a distance
from the axis of the cylinder, for r < a; assume that we are well
inside the cylinder and that [ > r so that we can neglect edge
effects. Assume that the gas is nonmagnetic.

Suppose a beam of nonrelativistic protons of mass m and velocity
V are sent into this cylinder with their initial velocities parallel
to the z axis. Neglect electrostatic, edge effects, and collisions
between protons and the gas. Show that while in the gas-filled
cylinder, the protons experience a force pushing them toward the
axis of the cylinder. Calculate the radial velocity V;, acquired by
the protons when they exit the cylinder. Assume that the distance
moved toward the axis while in the cylinder is negligible.

After the protons leave the cylindér, they continue to move toward
the z axis with constant radial velocity V,. Calculate the time T
required for the protons to reach the axis.

As a result, the protons will travel through the cylinder and be
focused at a point p on the z axis beyond the cylinder where p > .
Find p and show that it is independent of the initial distance of
the protons from the axis when they enter the cylinder.
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5. Consider an infinitely long, solid, nonmagnetic conducting rod of ra-
dius a centered on the z axis. A An infinitely Tong, hollow, conducting
cymgr with inner radius b > & and outer radius d is coaxial with
the rod. Let r be the radial distance perpendicular to the axis of the
rod and the cyhnder The region between the conducting rod and the
conductmg cylinder (that is, a < r < b) is filled with a nonconductmg,
linear, isotropic magnetic material with a constant relative permeabll—w
ity K = u/ to, where 1 is the permeability of the material, and Lo is
the permeability of free space (yo = 1 in Gaussian unlts)

The rod carries a current I in the +z direction while the concentric
cylinder carries a current I in the —z direction. We assume that the
current density j is unlform and of the same magnitude in both the rod ’

and the cylinder, T
I I

I e T m(d? — b?)’

 Joes It Gyom o
a) 3 pts. Calculate the magnetic field H(r) for the four regions - 7 o4 s A\

Q LISt

CoLr du(j(o( Z‘
\»@%

Lr<a ILa<r<b, Hngrgdwadgn

b) 3 pts. Calculate the magnetic flux (per unit length in the z direction)
crossing a half-plane extending from the axis of the coaxial system
and extending to infinity, that is, the surface defined by z > 0,
y =0, —00 < z < 0o. Use this result to find the self-inductance
L per unit length of the coaxial conductor.

c) 2 pts. Compute the magnetic energy U per unit length along the z axis
stored in the region filled with the linear magnetic material, that
is for region II, a < r < b.

d) 2 pts. Using the result from part c), show that the contribution to L
coming from the region a < r < b, Ly, is cons,tent with the
contribution from the same reglon that you calculated i in part b)
above. That is, compute 1LHI 2 and compare with the resuttof
part c). X oWl
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Figure 3: Geometry of point charge placed between grounded, parallel, con-
ducting plates. The plates extend infinitely in the z and y directions.

6. Consider a point charge ¢ placed between two parallel conducting plates,
as shown in Fig. 3. The electrostatic potential ¢ vanishes at the two
plates, located on the planes z =0 and z = a.

a) 2pts.

b) 3pts.

c) 2pts.

d) 3pts.

Because the physics has translational symmetry in the z-y plane,
show that the potential at a point r between the plates due to a
point charge at r’ can be written in the form (Gaussian units)

2
¢(r) — 47rq/ (é;;)eirl.(r—r’)lg(z’zl; kJ_),

with r; = (z,y), r', = (¢/,y’), where the function g satisfies

022

32
( n ki) oz #ik) = 8(z — 7).

What are the boundary conditions on g(z,2’;k,) at z = 0 and
z=a?

Solve this differential equation explicitly in closed form by solving
it in two regions, I: 0 < z < 2’ and II: 2/ < 2 < a, and match-
ing the solutions appropriately to reproduce the é-function in the
differential equation.

What is the relationship between the electric field at the surface
of a conductor and the surface charge density on the surface?

Determine the normal component of the electric field just to the
right of the plate at z = 0 (that is, at z = 0 + €) and just to the
left of the plate at z = a (that is, at z = a—¢). By integrating this

8
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field over the surfaces, and using the result of part c), determine
the total charge on each of the conducting surfaces. Is the sum of
the charges on the two plates as expected?






