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Classical Mechanics

I. A uniform rod of mass M and length L is held flat on a horizontal
table. The center of mass, at point B, projects a distance d past the
edge of the table. The rod is released at rest from a horizontal position
(0 = 0). The rod starts to rotate and eventually slides off the table.
The forces acting on the rod are gravity, and a contact force at the edge
of the table. The contact force at the table edge can be broken into
two components: a normal force N that is in the plane of the page and
perpendicular to the rod, and a friction force F° ¢ that is in the plane
of the page and parallel to the rod. The coeflicient of static friction
between the table edge and the rod is e

(a) Show that the moment of inertia of a rod of length L and mass M
about an axis perpendicular to the rod and passing through the
center of mass is M L?/12. (1pt)

(b)_Derive an expression for the moment of inertia of the rod about a
general point A, a distance d from the center of mass at point B.
(1pt)

wsed, rotate without sliding,
about the point A. Derive an expression for the angular velocity
of the rotating rod, w as a function of 4. (3pts)

(d) Calculate the force N as a function of 6 assuming that the rod
does not slide, but only pivots about the point A. (3pts)

(e) At some angle, as the rod rotates, the force of friction at the

point of contact will not be able to prevent the rod from sliding.
Determine the angle 6, at which the rod begins to slide off the

table. (3pts)
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2. It 1s posited by some that there is “dark matter” that only interacts
gravitationally with normal baryonic matter. Imagine a solar system
immersed in a uniformly dense spherical cloud of dark matter. A planet
in this solar system would experience gravitational forces from both the
sun and the dark matter cloud, such that the force on the planet is given

by
ﬁ:<—§—br) 7

where r is the radial distance of the planet to the sun, k and b are
positive constants, and 7 is the radial unit vector. We will consider
the limit of a “point planet,” ignoring the spin and internal dynamics
of the planet. You can assume that the motion of the planet is confined

to a plane.

(a) Derive an expression for the Lagrangian of this system and the as-
sociated equations of motion that follow from the BEuler-Lagrange
equation. (2 points)

(b) Show that the angular momentum about the origin, L, is con-
served. (1 point)

(c) Write an expression for the total energy of the particle E as a
function of m, r, dr/dt, L, k, and b. (1 points)

(d) Assume the planet moves in a circular orbit of radius a. Derive
a polynomial equation that uniquely determines a. Your answer
may depend upon m, k, b, L, and E. You need not solve the
equation for a. (2 points)

(e) For nearly circular orbits, the radial position of the planet will
oscillate about the equilibrium radius, a. Determine the approxi-
mate frequency of this oscillation in the limit that the oscillations
are small, and that the effect of the dark matter is small. Your

answer should be in terms of m, k, b, and a. (2 points)
(f) If b= 0, we have standard Keplerian motion. Prove that the orbit

is closed by proving that the period of small radial oscillations
when b = 0 equals the orbital period. Discuss qualitatively what

happens if b # 0. (2 points)
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3. A particle of mass m moves in a forcefield that has the form

_cos

1/(7', 0, ([l)) =K 7"_2
where @ is the spherical polar coordinate and r is the radial distance.

(a) Write down the time independent Hamilton-Jacobi equation for
W, Hamilton’s principal function, in spherical polar coordinates.
(2 points)

(b) Show that this equation can be solved by the method of
separation of variables, and obtain an expression for W =
W(r,0,¢; E,0q,03). Your answer will involve certain integrals;
you do not need to evaluate them. (2 points)

(c) Derive expressions for the momenta p,, ps and ps. Use these
expressions to give a physical interpretation for the separation
constants a; and «y. (3 points)

(d) Using the equation

ow

—=t4+7

5y + 51
find how r varies with time. Describe the radial motion for the
positive and negative E, for different signs of the separation con-
stants. You do not have to explicitly solve for r(t). You should
describe the values of r when ¢ — +o0, or whatever suitable end-

points in time are allowed by your solutions. (3 points)
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R

. Statistical Mechanics

4. The grand free energy or grand potential, =, can be obtained from
the Helmholtz, F(T', V, N) free energy or the internal energy U(S,V,N)

via:
==F-uN=U-TS—-uN

(a) What are the normal or proper variables for Z? (When = is written
in terms of its normal or proper variables, it constitutes a com-
plete thermodynamic description, without loss of information). (1
point)

(b) Derive expressions for the conjugate variables in this description.
(1 point) o

(c) What are the Maxwell relations governing derivatives of fﬁ
points)

(d) Consider a small system connected to a large thermodynamic
reservoir. State under what conditions (e.g. specify what quanti-
ties are exchanged between the system and reservoir) = is mini-
mized in equilibrium. Prove that this is the case by showing that
= is minimized when the system is in equilibrium. (3 points)

(e) Given the Helmholtz free energy for an ideal gas:

F(T,V, —_Nw’(1+10 {LTB'/Z\\\
\ N® )

where ® is an unspecified bytfixed constant, calculate the grand
free energy for an ideal gas. (3 points)
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5. Consider a solid consisting of a lattice of N atoms. If an atom is
knocked slightly out of its proper position in the lattice, this is called a
point defect. Assume that the energy of a point defect is €, and that if
there is no defect, the energy at that site is zero. Assume further that
the defects are distinguishable, and do not interact with each other.

(a) Determine the number of ways to place n point defects within the
N lattice sites. From this show that the entropy associated with
their configuration is approximately

S(N,n) ~k[NInN —nlon — (N = n)ln(N — n)]

(3 points).

(b) Derive a (simple) expression for the internal energy, U, of the
system as a function of n. From this result, write the entropy
above, S(N,n) as function of U and N, obtaining S(U,N). (2
points).

(c) Using the expression for S(U, N) above, calculate the chemical
potential for changes in N. (3 points).

(d) In thermal equilibrium we know

251~
T=\|=
ou
Use the approximate results above to calculate this temperature
as a function of U and N. From this result to find the number of

defects, n(N,T). (2 points).
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6. A black body may be thought of as a system of harmonic oscillators
possessing all possible frequencies—equivalently, it is a system of pho-
tons governed by the Bose-Einstein distribution.

(a)

()

Calculate the average energy u(v) of a quantum harmonic oscil-
lator of frequency v at temperature 7' where the allowed energies

of the oscillator are:
E(n) = hvn
and we have ignored the zero-point energy. (3 points)
The number of oscillators per unit phase space is 2d®qd®p/h3,

where the factor of 2 comes from the two transverse polarization
states of the photon. Calculate the total energy of the black body

qd®
U= 2/ /113 pu(l/)

in terms of a single dimensionless integral. This is the famous
Planck formula. [Use the relativistic relation between frequency
and momentum for photons, kv = pc.] (3 points)

Derive the Stefan-Boltzmann law, v = o7, and compute the
constant a using the formula

o x.n—l
/O do—— = ((m)I(n)
where ((n) is the Riemann zeta function, and I'(n) is the gamma
function . Your answer will be in terms of mathematical and

1
physical constants. (4 points)
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