Mechanics and Statistical Mechanics Qualifying Exam
Fall 2005






Problem 1: (10 Points)

We can use the temperature rise that results from the adiabatic com-
pression of an ideal monoatomic gas to measure the velocity of a
bullet. Suppose a piston of mass M can move in a uniform friction-
less tube of cross-sectional area A. The piston can only move in the
direction of compression. The tube is closed at one end, and the pis-
ton is sealed so that no gas can escape. The cylinder is filled with He
gas at temperature Ty and pressure Py, such that the initial position
of the piston is Lo from the closed end. A bullet of mass m is fired
from a gun and strikes the center of the piston. The bullet embeds
itself in the piston, causing the piston to move and compress the gas
in the tube. The maximum temperature of the gas in the cylinder is
T;. Assume that the piston compresses the gas adiabatically.

a. Find the initial velocity of the bullet, vy, in terms of the given
parameters. (2 Points)

b. What is the maximum displacement of the piston, AL, in terms of
the given parameters? (2 Points)

c. What is the maximum final pressure inside the cylinder, Py, in
terms of the given parameters? (2 Points)

d. Sketch the acceleration of the piston versus AL beginning at the
moment the bullet hits the piston. Make sure that the sketch is
qualitatively accurate. (2 Points)

e. Neglecting the exact time that the bullet impacts the piston, at
what value of AL is the piston at when the magnitude of its acceler-
ation is greatest?(1 Points)

f. We assumed that the gas was compressed adiabatically. If heat
was lost to the walls of the cylinder, would the resulting value of v,
be: (1.) too high, (2.) too low, or (3.) unchanged. To receive credit
you must explain your answer. ( 1 Points)
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Problem 2 (10 Points):

Identical objects of equal mass M are attached to posts by springs
with spring constant K. A spring of spring constant K’ is connected
between the two masses. The springs have negligible mass. Treat the
system in 1 dimension in space (horizontal dimension shown in the
figure).

K K

a. Derive differential equations that describe the motion of the two
masses. (2 Points)

b. What are the normal modes for the system? Indicate the modes
on a diagram with arrows on your answer sheet. (2 Points)

c. Find the frequencies of each of the normal modes. (3 Points)

d. Determine the functions that describe the motion of the masses if
the initial velocities of both masses are zero and the displacement of
mass 1 is L and mass 2 is -L. (2 Points)

e. How is the motion of the masses affected if the coupling is weak,
K’<<K? How is the motion of the masses affected when K'>>K?
(1 Points)
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Problem 3 (10 Points):

Consider a sphere of mass M and radius R that rolls, without sliding,
down a triangular wedge of mass m. The wedge is free to move on a
horizontal frictionless surface. The moment of inertia of the sphere
is 2MR?, and the incline of the wedge makes an angle ¢ with the
horizontal surface.

a. Find generalized coordinates for the system and label them on a
sketch. (2 Points)

b. Find a Lagrangian that describes the system. (4 Points)

c. Calculate the acceleration of the wedge as the ball rolls down it.
(4 Points)
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Problem 4 (10 Points):

A closed system consists of two distinguishable spin 1 magnets. Each
magnet can have one of three orientations, 1, <>, and |, with respect
to the z axis. The respective magnetic moments are +m, 0 and -m.
There is no applied field. The Hamiltonian, H = B £m;.

a. List all the possible microstates of the system. What is the total
number of states? (1 Points)

b. For B=0 what is the probability that the total magnetic moment,
M, of the system is zero?(1 Points)

c. For B=0 compute average value of the total magnetic moment,
(M), using the list in part (a.). (1 Points)

d. If AM=M—(M), show that (AM)?=(M?)-(M)2, and compute (AM)?
for B=0. (2 Points)

e. If the spins were indistinguishable, what would be the total number
of microstates of the system? (1 Points)

For the last two parts of this problem consider N of the spins described
in the initial part of the problem. These N spins are now in contact
with a heat bath at temperature, T, and B#£0.

f. Find the partition function of the N spins. (2 Points)

g. What is the Helmholtz free energy of the N spins? (2 Points)
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Problem 5 (10 Points):

The Otto cycle is shown in the figure. Stages 2 and 4 are adiabatic,
reversible expansion and compression. Stages 3 and 5 are constant
volume heating and cooling. Assume this is for an ideal gas.

a. Write down the efficiency, 7, in terms of the work, W, and the
added heat, Q. (2 Points)

b. During which stage or stages is heat added? (1 Points)

b. Calculate the heat added, Q, in terms of Cy and the temperature
change. (2 Points)

e. Show that the efficiency is 17:1-%7—1, where 7:—00—5. (3 Points)
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Problem 6 (10 Points):

Consider a white dwarf star that is composed of fully ionized *C and
160 (a neutral plasma). The particle density of the star is uniform,
and the electrons must be treated relativistically, E=pc.

a. Derive a relation between the Fermi energy of the electrons and
the electron density. (2 Points)

b. Derive a relation between the average kinetic energy of the elec-
trons and the Fermi energy. (1 Points)

c. The mass density is 10'?kg/m®. Calculate the average kinetic
energy of an electron, in MeV. (One MeV=1.6 x 10713J.) (1 Points)

d. The temperature is 10°K. Calculate the average kinetic energy of
the nuclei. (1 Points)

e. According to the virial theorem the internal energy of a system is
approximately equal to its gravitational potential energy. For a sphere
of uniform density, the gravitational potential energy is 3GM?/5R.
Derive an expression for the mass of the white dwarf in terms of
fundamental constants only. (3 Points)

f. Calculate the mass of the white dwarf in solar masses. (1 solar mass
= 2 x 10%°kg). A white dwarf in which the electrons are relativistic
is unstable with respect to collapse, so the quantity that you have
calculated is approximately the maximum mass of a white dwarf, a
quantity called the Chandrasekhar mass (1.4 solar masses). Does
your numerical result look reasonable? Why or why not? (2 Points)
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