Laser Cooling & Optical Dipole Trap

<u>Student:</u> Carlos Alvarado <u>Advisor:</u> Dr. Arne Schwettmann REU 2024

Bose-Einstein Condensate

- Ultra-cold gas
- Composed of Bosons
- De Broglie wavelength: $\lambda = h/p$
- Wave Functions overlap
- Indistinguishable
- Macroscopic population of the ground-state of the trap potential

~20,000 atoms in our pure BEC after 10 ms expansion (false color absorption image)

Motivation

F=1 Spinor BECs:

- Spin texture and spin waves in elongated BEC (Bigelow, Univ. of Rochester and Sengstock, Hamburk Univ.)
- Collisions in BEC happen coherently and are controllable
 - Matter-wave quantum optics in spin space
 - Atom interferometer with quantum-enhanced sensitivity
 - Prototyping for quantum technologies such as quantum-enhanced sensors and phase-sensitive amplifiers

Spinor BEC Setup

Magneto-Optical Trap

- Laser cooling reduces temperature @ 589 nm
- Magnetic fields compresses the cloud to the center
- $N \sim 1$ billion
- $T \sim 80 \ \mu K$
- $n \sim 8 \cdot 10^9$ atoms/cm³
- Photon recoil causes heat via trembling motion, random walk

My Work: Optical Dipole Trap

- Far red-detuned beam @ 1064 nm
- No absorption of photons
- No recoil heating
- AC Stark effect \rightarrow energy shift
- Crossed-focus of a high intensity beam at the center of the MOT
- Atoms are trapped at the center of the focus

Old Dipole Setup

New Optical Dipole Trap Set-Up

Collimation & Rayleigh length

- Ray optics VS Gaussian beam optics
- Telescope alters the beam diameter
- Rayleigh Length:
 cross-sectional area increased
 by √2

Telescope 1

- Protect the AOM (Collimate beam)
 Change Diameter
 Incoming: 3.5 mm
 Outgoing: ~1.00 mm
- $f_1 = -25 \text{ mm}, f_2 = 100 \text{ mm}$
- AOM: 13.97 cm
- $Z_0 = \sim 8 \text{ cm}$

Position (cm)

Telescope 2

- Confine the particles
- Change Diameter
 - \circ Incoming: ~1.0 mm
 - \circ Outgoing: ~ 6.5 mm
- $f_1 = -25 \text{ mm}, f_2 = 300 \text{ mm}$
- $\omega_0 = \sim 30 \ \mu m$

Evaporative Cooling

- Slowly reduce IR laser intensity
- Trap becomes more shallow
- High Energy Atoms leave the trap
- Remaining atoms rethermalize to cooler temperatures
- Nano-Kelvin Regime

Evaporative Cooling In The Lab

Time-of-flight absorption images of all-optical sodium Bose-Einstein condensate via evaporative cooling, ramping down dipole trap laser power from P = 40 W to P_{f}

AOM & Photodetector

Photodetector:Measure the intensity

• AOM: control the intensity of the

beam

• AOM: Change the the frequency

Dipole Trap In the Lab

Conclusion & Outlook

- Built the optical dipole trap system from scratch
- Optimized 3 telescopes
- Aligned and tested AOM
- Measured focus beam waist of ~30 µm
- Next Step: Trap atoms in dipole trap
- Will apply to OU! (Please take me \bigwedge (\bigcap)

