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Chapter 1:
Solid State Basics



Solid State 
Basics
Part 1: Second 
Quantization

● Undergraduate quantum mechanics: 
single-particle systems, simple 
potentials.

● Condensed matter: many-body physics, 
complex periodic systems.

● How do we go from single-particle states 
to many-particle states?



● Each individual particle in a many-body 
state can be expressed in a single 
particle basis.

● So naively, any (tensor) product of 
𝑁 single particle basis vectors is a 
suitable 𝑁-body state.

● A general 𝑁-body state can be written as 
a linear combination of these products.

Solid State 
Basics
Part 1: Second 
Quantization



Solid State 
Basics
Part 1: Second 
Quantization

● Not quite!
● The many-body state represents identical 

particles.
● This enforces an interchange symmetry, 

which constrains the form of the Hilbert 
space and can be quite complicated.

● New tool: Second Quantization. 
● All states are expressed using creation 

and annihilation operators, 𝑐𝛼
† and 𝑐𝛼.

● Counting states instead of tracking 
particles.



WELCOME TO THE 
BOUILLON ZONE

Chapter 1 Part 2
Transition Slide!  Yippee!



Solid State 
Basics
Part 2: Lattices and 
Reciprocal Space

● In solid state physics, we are interested 
in systems with periodic potentials.

● For example, consider a single electron 
in a 1D lattice of hydrogen nuclei, as 
shown above.

● The electron will feel a periodic sum of 
coulomb potentials. We ask, what are the 
energy eigenstates?



Solid State 
Basics
Part 2: Lattices and 
Reciprocal Space

● The Schrodinger equation for this system 
is very difficult to solve directly.

● Instead, we use the tools of linear 
algebra and second quantization.

● We define an orthogonal single-particle 
basis localized at each nuclus.

● Each basis state is denoted by a creation 
operator        .



Solid State 
Basics
Part 2: Lattices and 
Reciprocal Space

● Finding the eigenstates is reduced to 
diagonalizing .

● We recall Bloch’s Theorem.

● So, instead of considering the individual 
atomic sites as our basis, it will be more 
useful to use their Fourier Transform.

Eigenstates of a periodic Hamiltonian
will have the same periodicity, up to a 
phase defined by a plane wave.



Solid State 
Basics
Part 2: Lattices and 
Reciprocal Space

● New basis, indexed by a wavevector 𝑘.

𝑐𝑘 =
1

𝑁
෍

𝑛

𝑒−𝑖𝑘⋅𝑛𝑐𝑛 ;  𝑐𝑘
† =

1

𝑁
෍

𝑛

𝑒𝑖𝑘⋅𝑛𝑐𝑛
†

● In this new basis, it can be shown the 
Hamiltonian becomes

𝐻 = ෍

𝑘

𝑐𝑘
†ℎ𝑘𝑐𝑘

● Notice this is diagonal in 𝑘!
● That is, 𝑘 is a good quantum number.

𝑐𝑘
†|0⟩



Solid State 
Basics
Part 2: Lattices and 
Reciprocal Space

● The space of all possible 𝑘 is called the 
Reciprocal Space.

● This space is also a periodic lattice. The 
basic unit cell is called the Brillouin Zone.

● ℎ𝑘 gives us the energy of the eigenstate 
at each point in the Brillouin zone. This is 
called the Band Structure. 

𝑘

𝐸(𝑘)

𝑐𝑘
†|0⟩



Solid State 
Basics
Part 3: General 
Systems
(you don’t get a transition slide)

● In general, systems can have multiple 
localized states per lattice point

● This results in multiple bands in the 
Brillouin zone (ℎ𝑘 becomes a matrix).

● In many-electron systems, the single 
particle states are distributed thermally 
according to the Fermi distribution 𝑓(𝑘).

𝑘

𝐸(𝑘)



Solid State 
Basics
Part 3: General 
Systems

● In higher dimensional systems, the 
dimension of the Brillouin zone always 
matches the dimension of the lattice.

● We will focus on 2D systems, starting 
with possibly the first topological 
property observed in condensed matter.



Chapter 2:
The Quantum Integer Hall 
Effect



The Quantum 
Integer Hall 
Effect

● Recall the classical Hall effect

● We have a current 𝐽𝑥 perpendicular to the 
electric field 𝐸𝑦.



The Quantum 
Integer Hall 
Effect

● The proportionality constant between the 
Hall current and the electric field is 
called the Hall Conductance 𝜎𝑥𝑦.

𝐽𝑥 = 𝜎𝑥𝑦𝐸𝑦

● Turns out, when the magnetic field is 
sufficiently strong, the Hall conductance 
becomes quantized in integer multiples 
of 𝑒2/ℏ.

This is the Quantum 
Integer Hall Effect



The Quantum 
Integer Hall 
Effect

● This is often explained using the 
quantized motion of charged particles in 
a magnetic field (Landau levels).

● The Hall conductance can be more 
generally expressed in terms of the 
Quantum Geometry.

● This can have a nonzero effect even in 
the absence of a magnetic field, so it can 
be thought of as the more fundamental 
source of the Hall conductance.



Chapter 3:
Quantum Geometry; 
Topological Invariants 



Quantum 
Geometry

● Recall, every band in the Brillouin zone is 
a Manifold. For 2D systems, this manifold 
is (a priori) a torus.

● Every point 𝑘 on this manifold represents 
an energy eigenstate |𝑛𝑘⟩. 

● This allows us to define a natural 
geometry – distance and curvature – on 
this manifold.



Quantum 
Geometry

● Two points 𝑘1, 𝑘2 are “closer” if their 
states 𝑛𝑘1 , 𝑛𝑘2  are more similar.

● This motivates the definition of the 
Quantum Metric, which measures 
distance in the Brillouin zone.

𝑔𝑛
𝜇𝜈

=
1

2
𝜕𝜇𝑛𝑘 𝜕𝜈𝑛𝑘 + 𝜕𝜈𝑛𝑘 𝜕𝜇𝑛𝑘

● A curvature can also be defined on this 
manifold using parallel transport. The 
Berry Curvature is given by

Ω𝑛
𝜇𝜈

= 𝑖 𝜕𝜇𝑛𝑘 𝜕𝜈𝑛𝑘 − 𝜕𝜈𝑛𝑘 𝜕𝜇𝑛𝑘



Quantum 
Geometry

● Together these form the Quantum 
Geometric Tensor.

● By itself, this tensor is not a topological 
invariant. Stretching/bending the 
Brillouin zone will change its value.

● However, as we know by the Chern-
Gauss-Bonnet theorem, the integral of 
the Berry Curvature over the whole 
manifold is a topological invariant 
related to the Euler Characteristic.



● This is the source of the quantization of 
the Hall conductance. 

● If we can relate the Hall conductance to 
the integral of the Berry curvature (the 
Chern Number), we can demonstrate its 
quantization.Quantum 

Geometry
Ω

Ω Ω Ω



Chapter 4:
Kubo Formulas; Correlation 
Functions



Kubo Formulas

● So, how do we relate the Hall 
conductance to the Berry curvature?

● We start with the Kubo formula, which 
relates the linear response of an 
observable 𝐴 to the time dependent 
perturbation 𝐻′.

𝛿 𝐴 𝑡 = −𝑖 න
𝑡0

∞

𝑑𝑡′𝜃(𝑡 − 𝑡′) 𝐴 𝑡 , 𝐻′ 𝑡′
0𝑒−𝜂(𝑡−𝑡′)

● For the Hall conductance, the observable 
we use is the current operator 𝑗, and the 
perturbation we use is 𝑗 ⋅ 𝐴ext.



Kubo Formulas

● By comparing the result to the definition 
of electrical conductivity, we find

𝜎𝜇𝜈 𝜔 =
1

ℏ𝜔+𝐴
න

0

∞

𝑑𝑡 𝑒𝑖𝜔+𝑡 𝑗𝜇 𝑡 , 𝑗𝜈 0

● These are called Correlation Functions.
● Evaluating the integral and skipping a 

bunch of steps, we get

𝜎𝜇𝜈 0 = −
𝑒2

ℏ
෍

𝑛

න
BZ

𝑓𝑛 𝑘 Ω𝑛
𝜇𝜈

      which is what we have stated before. 



Kubo Formulas

● We now ask if we can do the same 
process for different currents.

● Can we relate the thermal conductivity to 
the quantum geometry?

● If the Hall conductance is related to the 
Berry phase, can we relate the 
longitudinal conductance to the quantum 
metric? 

● These are the research questions I 
tackled this summer.



Chapter 5:
Thermal Conductivity



Thermal 
Conductivity

● I first derived the energy current operator 
𝒋𝑞

𝐸  from the continuity equation
𝜕𝐾(𝑥)

𝜕𝑡
+ ∇ ⋅ 𝒋𝐸 𝑥 = 0

● Here 𝐾 is the energy density operator. 
After Fourier transforming and a bunch 
of operator algebra, we have

𝒋𝑞
𝐸 =

1

ℏ
෍

𝑘

𝑐𝑘
†ℎ𝑘(𝜕𝑘ℎ𝑘)𝑐𝑘+𝑞



Thermal 
Conductivity

● To get the thermal conductivity, we 
analyze the heat current 𝑱𝑄 = 𝑱𝐸 − 𝜇𝑱𝑃 up 
to linear response.

● Here, there are two “forces” that drive the 
corresponding currents.

● One relates to the temperature gradient, 
while the other relates to the potential 
and concentration gradient.

● The coefficients relating the currents to 
the forces are the correlation functions 
between the currents.



Thermal 
Conductivity

● I will sketch the derivation of the energy-
energy current correlation function used 
to calculate the Hall conductivity (𝜇 ≠ 𝜈).

● This involves matrix elements in the form

𝑚 𝑗𝜇
𝑄

𝑛 = 𝑚 𝐻𝑘(𝜕𝜇𝐻𝑘) 𝑛



Thermal 
Conductivity

● Here 𝑚, 𝑛 are energy eigenstates, so we 
can write

𝑚 𝐻𝑘(𝜕𝜇𝐻𝑘) 𝑛 = 𝐸𝑚 𝑚 (𝜕𝜇𝐻𝑘) 𝑛

                                 = 𝐸𝑚(𝐸𝑛 − 𝐸𝑚) 𝑚 𝜕𝜇 𝑛

● Which is very close to the form of the 
Berry curvature!

● I will now state the result.

● Here

Ω𝑚𝑛
𝜇𝜈

= 𝑖 𝑚 𝜕𝜇 𝑛 𝑛 𝜕𝜈 𝑚 − 𝑚 𝜕𝜈 𝑛 𝑛 𝜕𝜇 𝑚

      is not quite the Berry Curvature.



Thermal 
Conductivity

Other results:

1. I derived the conventional current-current 
conductivity using this method, which 
matched the TKNN formula.

2. I derived 𝐿𝜇𝜈
𝑃𝑄

, which is the same as 𝐿𝜇𝜈
𝑄𝑄

 

except the energy factor is (𝐸𝑛 + 𝐸𝑚)/2.
3. I derived the longitudinal correlators, 

which are also close to but not quite the 
quantum metric.



Full thermal conductivity assuming 
𝑱𝑃 = 0. Second term is related to 
the thermoelectric effect.

All transverse and longitudinal 
correlation functions.



Chapter 6:
Flat Bands and Further Work



Flat Bands and 
Further Work

● Recall, a flat band is a band in the 
Brillouin zone whose energy is constant.

● Condensed matter physicists like flat 
band systems because with no 
dispersion, the quantum geometry 
becomes more evident.



Flat Bands and 
Further Work

● Looking at the equation,

● we see the energy levels 𝐸𝑚 and 𝐸𝑛 
obscure the quantum geometry.

● If we had flat bands, we could take 𝐸𝑚, 𝐸𝑛 
out of the 𝑘 integral.

● The next step is to calculate the 
electrical and thermal conductivity using 
a generic flat band Hamiltonian and see 
if we get any topological invariants out. 



Wait What?



Wait What?

● How can a flat band conduct?
● Isn’t the slope of 𝐸(𝑘) the velocity of the 

state?
● If we have a constant energy, how could 

we have any current at all?
● How could we have any conductivity?
● Aren’t these states stationary?

● Well, the fact we have any conductivity at 
all is interesting, as we are dealing with 
insulators.

● Typically, filled bands cannot conduct.
● There must be something more going on!



Flat Bands and 
Further Work

● The answer is in the topology.
● In multi-band systems, ℎ𝑘 is not just a 

number but a matrix. 𝜕𝑘ℎ𝑘 ≠ 0.
● It contains information on both the 

energy of the states and the Vorticity.
● This can create singularities in the Berry 

curvature and thus influence the 
topology of the Brillouin zone.



Flat Bands and 
Further Work

● Look back at

𝜎𝜇𝜈 0 = −
𝑒2

ℏ
෍

𝑛

න
BZ

𝑓𝑛 𝑘 Ω𝑛
𝜇𝜈

● The topology influences the calculation 
of this integral because different 
topological spaces must be 
parameterized indifferent ways.

● We say a torus has trivial topology 
because we can define a smooth single-
valued gauge on it.

● So, the integral becomes trivial by 
Stokes’ Theorem. 



Questions?
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