

Exploring Quantum Light Driven Few-level Systems

Xylo Molenda Faculty Advisor: Doerte Blume

Center for Quantum Research and Technology Homer L. Dodge Department of Physics and Astronomy University of Oklahoma, Norman, United States

Support from the W.M. Keck Foundation is gratefully acknowledged.

Spin-1 System (Classical Drive)

- The ideal spin-1 system is simple
- The three energy levels represent different spin orientations
- Without a coherent drive (Ω) incoherent dissipators $(\gamma_d$ and $\gamma_g)$, create a limit cycle (steady state) in |2⟩

Spin-1 System (Classical Drive)

- We need rf fields to drive transitions in the 3-level system
- Lasers in the optical wavelengths are much more convenient
- We need to include an additional energy level

3 -Level vs. 3+1 Level

From Physics Today 75, 46 (2022).

- LIGO (Laser Interferometer Gravitational-Wave Observatory) first observed gravitational waves in 2015
- Today LIGO uses quantum light to reduce noise in their output field ⇒ enhanced sensitivity

- Classical light does not 'feel' the effect of the atom emitting or absorbing a photon
- Quantum light 'feels' a significant change

 $n \gg 0$, $\Delta n = 1 \rightarrow \sim 0\%$ change $n = 5$, $\Delta n = 1 \rightarrow 20\%$ change $n = 1$, $\Delta n = 1 \rightarrow 100\%$ change

photon number (quantized)

3+1 Atomic System (Quantum Drive)

- Can synchronization be achieved with quantum light?
- Can we transfer entanglement from the quantum light to the atom?

• Coherent states are considered the 'most classical' states of quantum light

• Fock states are considered the 'most quantum'

Squeezed State

- Heisenberg's uncertainty principle: Δ Δ ≥ \hbar 2
- "Squeezing" → squish along one quadrature and stretch along another
- The squeezing parameter ζ is complex

 $\Delta x = \Delta p$

 $\bar{n}=0$

Squeezed State

 $\bar{n}=1$ $\zeta=re^{i\theta}$

 $\theta = \pi/2$ $\theta = 3\pi/4$ $\theta = \pi$

Synchronization

- We define synchronization as **phase localization in the steady state**
- A strong drive can destroy the limit cycle (= steady state without drive)

Synchronization, Classical Light

- \bullet | $\langle e^{i\widehat{\phi}}$ ⟩| measures synchronization
- Synchronization oscillates with time, approaching a steady-state limit

Synchronization, Quantum Light

- Is $|\langle e^{i\widehat{\phi}} %Mathcal{P}_{r}^{\phi} \rangle| \leq 2$ ⟩| a valid measure of synchronization for a quantum drive?
- Synchronization oscillates with time, before decaying to zero

Synchronization, Quantum Light

- The nature of the system is such that photons can be repeatedly absorbed
- There is no analogous path for photon emission
- The reservoir loses photons with time

- The effective drive strength (g_{eff}) evolves with time:
- $g_{eff} = g\sqrt{\bar{n}}$
- We can account for the absorbed photons by increasing the drive strength (g) with time

Synchronization, Time-dependent Drive

Synchronization, time-dependent drive

 $\bar{n}(t = 0) = 10$

Synchronization, time-dependent drive

 $\bar{n}(t = 0) = 20$

Conclusion

- Quantum light uniquely interacts with the spin-1 system
- It is possible to tune quantum light such that the synchronization resembles that of classical light
- We open a dialogue on whether quantum synchronization can be achieved and measured with improved accuracy using quantum light