

Alice Heranval with Advisor Dr. Järvelä University of Oklahoma NSF-REU Program

In This Talk...

• Introduction: AGN and NLS1s

- Relativistic Jets, Variability
- Case of Unusual Sources
- About the IRAM 30m Telescope
- Data Reduction
- Radio Maps
- Calculating Spectral Index
- Results & Next Steps
- Citations & Special Thanks

What are Active Galactic Nuclei (AGN)?

- Center of galaxy with supermassive black hole that is actively accreting matter
- Extremely luminous and not from stars, radiation ranging across electromagnetic spectrum
 - Can outshine its entire host galaxy!
- Since their discovery they have been classified into many different categories, including quasars, blazars, Narrow-Line Seyfert 1 galaxies.

Narrow-Line Seyfert 1 Galaxies (NLS1s)

- Early-stage AGN
- Low-intermediate black hole masses (<10⁸ solar masses)
- Permitted lines from broad-line region are narrow
- Strong X-ray emitters, but many not detected in radio
- Some strong radio sources with jets

Relativistic Jets and Variability

- Relativistic Jets- plasma accelerated and ejected from vicinity of black hole to beyond host galaxy
- Sources can have detected variability in different wavelengths
 - Time scales from days to years
 - Shortest variability time scale depends on size of region and relativistic Doppler factor

Unusual Sources

$$\Delta S(t) = \Delta S_{\max} e^{(t - t_{\max})/\tau}$$

How fast the flare rises or decays

 Sources weak in radio frequencies identified for recurring flares in 37 GHz (~8mm), over timescales ranging in days

- Never observed in AGN in radio before!
- Radio is usually in timescales of weeks or longer
- High variability can indicate presence of jets
- Jets not detected at longer wavelengths
 - Synchrotron Self Absorption (SSA)
 - Photons emitted and absorbed by same field
 - Free Free Absorption (FFA)
 - Photons absorbed by external screen

Unusual Sources

 Could detect jets at shorter wavelengths (2 and 1.15mm or 150 and 260GHz)

- Two wavelengths in order to get an idea of the shape of the spectrum
- Inverted spectra = emission from dust, not jets

From Salomé, Quentin

Unusual Sources

 Could detect jets at shorter wavelengths (2 and 1.15mm or 150 and 260GHz)

- Two wavelengths in order to get an idea of the shape of the spectrum
- Inverted spectra = emission from dust, not jets

From Salomé, Quentin

IRAM 30-Meter Telescope, Spain

- Single-dish telescope scans small areas of the sky to create radio map
- NIKA2 camera two wavelengths at once
- 3 Receivers
 - A1 + A3 for 1.15mm, A2 for 2mm

IRAM 30-Meter Telescope, Spain

- Single-dish telescope scans small areas of the sky to create radio map
- NIKA2 camera two wavelengths at once
- 3 Receivers
 - A1 + A3 for 1.15mm, A2 for 2mm

Pointing & Imaging In Continuum (PIIC) Pipelines

- Data reduction software for NIKA2
- Make scripts for each dataset
- Used Python to assemble datasets for each source
 + wavelength from archive of observations
- Some difficulties with PIIC

<pre>inDir imbfitsDir outDir red inList "source_a"'ni select obs m sort inList list</pre>	kaBand' ! e.g. Superantennae_a2, give without the default extension .LIST ! only maps
!	parameter setting
let weakSou no	! if yes signal >5*rmsOfNIKA2pixel (see above) masked after the sky noise subtraction
let deepField no	! yes for e.g. GOODSNorth, COSMOS, HDF, DeepField1,
let souSign "+"	! "-" if source with negative signal, e.q. SZ; "+-" if positive and negative sources
let posSeq " "	<pre>! [H M S D AM AS] centre of the final (R.A.,DEC) map ! necessary only if individual maps have different centres</pre>
let eqExtrAS 0.0 let souRAoffAS 0.0 let souDECoffAS 0.0	<pre>! [arcsec] half map extent in EQ, Ø to calculate it (all maps must have the same centre) ! [arcsec] R.A. offset of the source relative to posSeq ! [arcsec] DEC offset of the source relative to posSeq</pre>
let bl0rder0rig 2	! order of instability corrections in subscans, for compact sources >2 might be better
let nIterSource 20	! number of iterations; higher values might be necessary
if nIterSource.ge.1 let rZmEq 0.0 let polZmEq " " let smSNRpar 0.0	then ! [arcsec] if >0 outside of this radius the data of the iterative source are neglected ! [arcsec] relative to posSeq, action as for rZmEq but using this polygon ! if >0 S/N is calculated using the smoothed map but the iterative source not smoothed, ! if <0 also the iterative source smoothed the ITERATIVE MAPS APE NEVED SMOOTHED
end if	
@ mapTPoptionalSets pause main	

Radio Maps

Final Maps

- Point-like sources
- Add contours for calculating peak flux density

J1509 Contour map plotted with CARTA

J1509 radio map plotted with DS9

RMS Maps

 Allow us to measure RMS to determine detections or limit noise

J1509 statistics made with DS9

Finding Spectral Index

- Measure RMS, we use 3-sigma detection limit
- Plot contour map
- Use to find peak flux density per beam
 - Point source so only peak flux density matters

• •	••••		•		Circle	•			
center=: fk5 1 pixel	227.3260 = 3 arc	5 61.634 sec	828						
reg	sum •	•	error	area (arcsec	**2)	surf_br. (sum/ar	i csec**2)	surf_ern (sum/arc	c csec**2)
1	 391.735	55	19.7923	3519		0.11132		0.005624	441
reg	sum	npix 	mean 	median	min 	max 	var 	stddev	rms
1	391.735	55 391	1.00188	0.99786	5 0.9691	19 1.052	46 0.0003	397044 0.	.019926
					\bigcirc				

Finding Spectral Index

- Measure RMS, we use 3-sigma detection limit
- Plot contour map
- Use to find peak flux density per beam
 - Point source so only peak flux density matters

Finding Spectral Index

- Measure RMS, we use 3-sigma detection limit
- Plot contour map
- Use to find peak flux density per beam
 - Point source so only peak flux density matters

Contour map and statistics plotted with CASA

Image component size (co	nvolved with beam)
major axis FWHM:	8.74 +/- 0.76 arcsec
minor axis FWHM:	6.94 +/- 0.44 arcsec
position angle: 70 +	/- 11 deg
	-
Clean beam size	
major axis FWHM: 1	1.60 arcsec
minor axis FWHM: 1	1.60 arcsec
position angle: 90.0	0 deg
Image component size (de	convolved from beam)
Could not deconvolve so	ource from beam. Source may be (only marginally) resolved in only one direction
Flux	
Integrated: 3.43 +/-	0.60 mJy
Peak: 7.62 +/- 0	.56 mJy/beam
Polarization:	
Spectrum	
fraguanov 1000	000 MUz (20 07025 cm)

Finding Spectral Index

- Measure RMS, we use 3-sigma detection limit
- Plot contour map
- Use to find peak flux density per beam
 - Point source so only peak flux density matters

Could not deconvolve source from beam Flux ------ Integrated: 3.43 +/- 0.60 mJy --- Peak: 7.62 +/- 0.56 mJy/beam --- Polarization:

Contour map and statistics plotted with CASA

Finding Spectral Index

Use equation to calculate spectral index *α* (log base 10):

- *s* indicates peak flux density per beam
- ν indicates frequency

- Can still get upper limits from data
 - Receivers cannot pick up weaker emission!
- Use RMS map
 - Upper limit = 3 * RMS for 3sigma detection limit

- Can still get upper limits from data
 - Receivers cannot pick up weaker emission!
- Use RMS map
 - Upper limit = 3 * RMS for 3sigma detection limit

- Can still get upper limits from data
 - Receivers cannot pick up weaker emission!
- Use RMS map
 - Upper limit = 3 * RMS for 3sigma detection limit

- Can still get upper limits from data
 - Receivers cannot pick up weaker emission!
- Use RMS map
 - Upper limit = 3 * *RMS* for 3sigma detection limit

Using Spectral Index (α)

$$\alpha > \frac{\log(\frac{7.5}{0.75})}{\log(\frac{260}{150})} \approx 4.2!$$

- Spectral Index is an indication of absorption type
 - Synchrotron Self-Absorption α up to 2.5
 - Free-Free Absorption α up to 4
 - $\alpha > 4$ indicates dust, not jets

Results & Next Steps

- Most sources undetected at 2mm and 1.15mm
- J1509 confirmed detection at 1.15mm
 - Spectral index indicates that emission is from dust
 - Further study required: models indicate dust should not be detectable at this wavelength
- Detections of dust can be used to finetune Spectral Energy Distribution (SED) model of galaxies

Results & Next Steps

 J1509 confirmed detection at 1.15mm

- Spectral index indicates that emission is from dust
- Further study required: models indicate dust should not be detectable at this wavelength

Citations & Special Thanks

<u>[his Photo</u> by Unknown Author is licensed under <u>CC B</u>

Special Thanks to:

Dr. Järvelä Dr. Abbott & Dr. Strauss Stefano Berta and PIIC developers AGN group SIMBAL group Shania! My lovely fellow REU students Everyone who gave talks/lectures during REU New Girl Tuesday sno cone truck

- Beckmann, V., & Shrader, C. (2013). *Active galactic nuclei*. Wiley.
- Järvelä, E. (2018). *Narrow-line Seyfert 1 galaxies: Observational and statistical analysis* [PhD thesis]. Aalto University.
- Active galactic nucleus. ESA/Hubble | ESA/Hubble. (n.d.). https://esahubble.org/wordbank/active-galacticnucleus/
- Järvelä, E. *Millimetre view of the absorbed jets in NLS1s*.
- Hermelo, I., & NIKA2 Team. (2015). NIKA2 Wiki. Continuum/NIKA2/Main - www.iram.es Main Wiki. https://publicwiki.iram.es/Continuum/NIKA2/Main
- Software:
 - PIIC Pipelines, DS9, CASA, CARTA