CHAPTER VIII
ASYMPTOTIC EXPANSIONS AND SUMMABLE SERIES
81. Simple example of an asymptotic expansion.

Counsider the function f(z)= f t~1¢*~tdt, where « is real and positive,
z
and the path of integration is the real axis.

By repeated integrations by parts, we obtain
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In connexion with the function f(«), we therefore consider the expression

(=)= (n=1)!
w“ ’

Up—y =
and we shall write
1 2! I il (-)rn!

n 1
S upmio 1 2
™

= =t . 1 =S, (z).

Then we have |tn/um_,|=mz'—> 0 as m—> w. The series Su, 18 there-
Jore divergent for all values of . In spite of this, however, the series can
be used for the calculation of £(z); this can be seen in the following way.

Take any fixed value for the number n, and calculate the value of S,.

We have
“ertdt
f@=-Sa(@=(prmen [ 2,
and therefore, since e*t<1,

f@=8@l=ea Dt [ ey [ E oL

For values of & which are sufficiently large, the right-hand member of this
equation is very small. Thus, if we take z > 2n, we have

7@ =84 ()| < g

which for large values of n is very small. It follows therefore that the value
of the function f(x) can be calculated with great accuracy for large values of z,
by taking the sum of a suitable number of terms of the series Su,,.
Taking even fairly small values of  and »
85 (10)=009152, and 0< £(10) - S; (10) < 000012,
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The series is on this account said to be an asymptotic expansion of the
function f(z). The precise definition of an asymptotic expansion will now
be given.

82. Definition of an asymptotic expansion.

A divergent series
A°+A—‘+‘i,’ +.+ é,-:-'+
z 2z 2
in which the sum of the first (n + 1) terms is S, (2), is said to be an asymptotic
expansion of a function f(z) for a given range of values of argz, if the
expression R, (z)=2"{f(z)—Sn(2)} satisfies the condition
lim R,(z) =0 (n fixed),

|z| o

even though lim | R,(2)|=o (z fixed).

”n -0

When this is the case, we can make
|27 (f(2) = Sa (2} | <&,
where e is arbitrarily small, by taking | z| sufficiently large.
We denote the fact that the series is the asymptotic expansion of f(z) by

writing
f(z)~ % Apz™

The definition which hus just been given is due to Poincaré®. Special
asymptotic expansions had, however, been discovered and used in the
eighteenth century by Stirling, Maclaurin and Euler. Asymptotic expan-
sions are of great importance in the theory of Linear Differential Equations,
and in Dynamical Astronomy; some applications will be given in subsequent
chapters of the present work.

The example discussed in § 81 clearly satisfies the definition just
given: for, when « is positive, | 2" (f(@)=8Sn(®)}|<nta?—>0asz— .

For the sake of simplicity, in this chapter we shall for the most part consider
asymptotic expansions only in connexion with real positive values of the argument.
The theory for complex values of the argument may be discussed by an extension of the
analysis.

821. Another example of an asymptotic expansion.

As a second example, consider the function f (), represented by the series

© ok
2\ = ———
f(‘l/ kfl $+“ »

where r>0and 0 <e<1.

* Acta Mathematica, viu. (1886), pp. 295-344.
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The ratio of the kth term of this series to the (k— 1)th is less t'.han 6 and consequently
the series converges for all positive values of z. We shall confine our attention to positive
values of . We have, when x> ¥,

1 1 & B B i
Py 2l Rl e L MR

If, therefore, it were allowable* to expand each fraction x—':-—k in this way, and to
rearrange the series for f(#) in descending powers of z, we should obtain the formal series
Al AZ An
-5 +F +..-+;“‘+-..,

where . Apm( =)l ; n-1ck,
k=1

But this procedure is not legitimate, and in fact s Ao diverges. We can, however,

n=1

shew that it is an asymptotic expansion of £ (x).

4, 4 4
For let S,,(x)=—;‘+;:+...+zm—_,’_'l.
< fct ket kick (=) &
Then R N R ey
© LA I
-3 -2
i ® k\nt+l ok l _'_200 .
so that |f(x)-S,,(x)l-—'kz‘( 2) TE <ETE e
Nowk; k*ck converges for any given value of # and is equal to C,, say; and hence
=1
| f(x) =8 (z) | <Cp™"3
Consequently f(z)~ s dpz™.
n=1

Ezample. 1f f(x)= ] ¢®-t dt, where z is positive and the path of integration is the
x

real axis, prove that

1 1.3 1.3.5

1
SO~ o~ it g~ T T

[In fact, it was shewn by Stokes in 1857 that

z 1 1 ,1.3 1.3.5
B2 Jf _ — - — b .
fﬁd d~thetJm <2x PRI S T +"')’

the upper or lower sign is to be taken according as -}r<argr<iw or ir<argr < $n.]
83. Multiplication of asymptotic expansions.

We shall now shew that two asymptotic expansions, valid for a common
range of values of argz, can be multiplied together in the same way as
ordinary series, the result being a new asymptotic expansion.

Forlet  f(z)~ S Amz™, ¢(z)~ S Bnz™
m=0

m=0

* It is not allowable, since k >z for all terms of the series after some definite term.
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and let S,(2) and T, (2) be the sums of their first (n + 1) terms; so that,
n being fixed,

f(2)=8a(2)=0(z"), $(2)=Tn(2)=0(z")
Then, if Cpn = A¢Bm+ A1 By + ... + A B,, it is obvious that*

8o (2) Ta(s)= 3 Cmz=™+ 0 (2"
m=(

But f(2) ¢ (2) = (8n (2) + 0 (™)} (T (2) + 0 (z7)}
=8, (2) Ty (2) +0(2™™)
= % Cnz ™+ 0 (27™).

This result being true for any fixed value of n, we see that
f(@d(2)~ ”Eo Cinz™™.

831. Integration of asymptotic expansions.

We shall now shew that it is permissible to integrate an asymptotic
expansion term by term, the resulting series being the asymptotic expansion
of the integral of the function represented by the original series.

Forlet f(z)~ 3 Az, and let S, ()= g: Apa™
m=32 m=2
Then, given any positive number ¢, we can find , such that

|f(z) -8, (x)| < e|xz|~™ when z>a,,
and therefore

J F(@)de ~ j S,,(w)dw’g J |f (@) — S (2) | da
€ .
<(fn—1)a:"“'
e A, 4, 4,
But zS,.(x)d.’L—-';‘F‘*z-—.'}'...'f'm,
@ 2 A‘”l
and therefore L f(a,)dw~m§2 Tk

On the other hand, it is not in general permissiblet to differentiate an asymptotic
expansion; this may be seen by considcring ¢—= sin (e?).

832. Uniqueness of un asymptotic expansion.
A question naturally suggests itself, as to whether a given series can be

* See § 211; we use o (s7™) to denote any function y (z) such that z* ¢ (z) =0 as |z| -+ ».
t For a theorem concerning differentiation of asymptotic expansions representing analytic
functions, see Ritt, Bull. American Math. Soc. xx1v. (1918), pp. 225-227.
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the asymptotic expansion of several distinct functions. The answer to this
is in the affirmative. To shew this, we first observe that there are functions
L (x) which are represented asymptotically by a series all of whose terms are
zero, 1.e. functions such that lim 2L (z) =0 for every fixed value of n. The

> D

function ¢~* is such a function when z is positive. The asymptotic expansion*
of a function J () is therefore also the asymptotic expansion of

J (z) + L ().

On the other hand, a function cannot be represented by more than one distinct
asymptotic expansion over the whole of a given range of values of z ; for, if

F@)~ 3 Aui ™, FE)~ 3 B

1 " 4 A, B B
then zlfiz <A0+7‘+...+Z—:-Bo-7‘—...-_z.i'>=o,
which can only be if Ag=B,; 4,=8B,, ....

Important examples of asymptotic expansions will be discussed later, in connexion
with the Gamma-function (Chapter xir) and Bessel functions (Chapter xvir).

84. Methods of ‘ summang’ seres.
We have seen that it is possible to obtain a development of the form

f@= 3 dne+ Ba@)

where R, (x)—»  as n—» o0, and the series X A, 2™ does not converge.
m=0

We now consider what meaning, if any, can be attached to the ‘sum’ of
a non-convergent series. That is to say, given the numbers a,, a;, as, ...,
we wish to formulate definite rules by which we can obtain from them a

a0 L 4
number 8 such that 8= 3 a, if £ «, converges, and such that S exists
n=0 =0

when this series does not converge.

841. Borel'st method of summation.
We have seen (§ 7-81) that

@ [ J

an*=| e t¢(tz)dt,
0 0

n=

S anthz® . . . .. .
where ¢ (tz)= 2 — the equation certainly being true inside the circle
n=0 ¢

@
of convergence of % a,2". If the integral exists at points z outside this
n=0

@
circle, we define the ‘Borel sum’ of 3 a,2” to mean the integral.
© n=0
* It has been shewn that when the coeflicients in the expansion satisfy certain inequalities,
there is only one analytic function with that asymptotic expansion. See Phil. Trans. 213, a,
(1911), pp. 279-313.
+ Borel, Lecons sur les Séries Divergentes (1901), pp. 97-115.
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Thus, whenever R (z) <1, the ‘Borel sum’ of the series '2.0 ™ is

[ e te*dt = (1 —2z)™
0
If the ¢ Borel sum’ exists we say that the series is * summable (B).’

842. Euler's® method of summation.
A method, practlcally due to Euler, is suggested by the theorem of § 371;

the ‘sum’ of 2 a, may be defined as lim 2 a,z" when this limit exists,
n=0 z-»1-0 n=0

Thus the ‘sum’ of the series 1 —1+1~1+... would be
lim 1-z+2’—...)= lim (1+2)7'=1

z-=1-0 z-»=1-0
843. Cesaro'st method of summation.

Let sp=a,+a;+... +ay; then sz—hm (sl+s,+...+s,.) exists, we

n-DQ

say that %an is ‘summable (C1), and that its sum (C1) 18 8. It is
n=1

necessary to establish the ‘ condition of consistency},’ namely that §= % a,
n=1
when this series is convergent.
o n
To obtain the required result, let = an=8, = 8n=nS,; then we have
m=1 m=1
to prove that S, —s.

. n+p
Given e, we can choose n such that l 3 am|<e for all values of p, and

m=n+1

80 |$—8, (<€

Then, if v > n, we have
1 n—1 ~1

Since 1, 1 —»}, 1—2p7}, ... is a positive decreasmg sequence, 1t follows
from Abel’s inequality (§ 2:301) that

n n+1 v—-1 n
an+1(1";>+am+a(1— ” >+...+ay<1— ” >!<(1—;>e.

Therefore

S,—{al+a,(1—%)+...+a,.( nzl)}'<(l—g>e.

* Instit. Calc. Diff. (1755). See Borel, loc. cit. Introduction.
+ Bulletin des Sciences Math. (2), x1v. (1890), p. 114.
1 See the end of § 8-4.
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Making »— o, we see that, if S be any one of the limit points (§ 221)
of S,, then

S—%am

m=1

e

Therefore, since |8 — 8, | < ¢, we have
| S —8|<2e

This inequality being true for every positive value of ¢ we infer, as in § 2:21,
that 8 = s; that is to say S, has the unique limit 8; this is the theorem which
had to be proved.

Example 1. Frame a definition of ‘uniform summability (C 1) of a series of variable
terms.’

Example 2. If by y>bns1, v >0 when 7 <, and if, when 7 is fized, lim by,,=1, and

y=»w©

P
if $ ay=s, then lim { 3 amb, ,}=S,

m=1 v =1

8431. Cesiro’s general method of summation.

L] 1 4
A series T a, is said to be ‘summable (Cr)’ if lim 3 a,b, , exists, where
n=0 v n=0

r r r \1™
by, »=1, b"'v={(1+v+l—n> (1+v+2—n>"' 1+;:T)} .

It follows from § 843 example 2 that the ‘condition of consistency’ is satisfied ; in
fact it can be proved® that if a series is summable (Cr') it is also summable (Cr) when
r >+ ; the condition of consistency is the particular case of this result when r=0.

844. The method of summation ‘of Rieszt.
A more extended method of ‘summing’ a series than the preceding is by means of

. Y An\"
lim 2 (1 _f> ;TN
yv=o n=1 v
in which ), is any real function of » which tends to infinity with n. A series for which
this limit exists is said to be ‘summable (Rr) with sum-function A,/

85. HARDY'S} CONVERGENCE THEOREM.

Let § an be a series which 18 summable (C 1). Then if
n=1
Ap = 0 (1/71),

€N
the sertes 3 a, converges.
n=1

* Bromwich, Infinite Series, § 122.

+ Comptes Rendus, cxuix. (1910), pp. 18-21,

+ Proc. London Math. Soc. (2), viir. (1910), pp. 302-304. For the proof here given, we are
indebted to Mr Littlewood.
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Let 8, = a, + a3 + ... + @n ; then gince 3 a, is summable (C 1), we have

n=1

8 +8&+...+s=nis+0(1)},

where s is the sum (C' 1) of § an.

n=1
Let Sm—8=1tm, (m=1,2, ...m),
and let L+t+..+ta=0n.

With this notation, it is sufficient to shew that, if |a, | < Kn™, where K
is independent of n, and if gn =mn.0(1), then t, >0 as n— .

Suppose first that a,, as, ... are real. Then, if ¢, does not tend to zero,
there is some positive number h such that there are an unlimited number of
the numbers , which satisfy either (i) t, > h or (i) t, < —h. We shall shew
that either of these hypotheses implies a contradiction. Take the former*,
and choose n so that £, > h.

Then, whenr=0, 1,2, ...,
|a,,+,|<K/n.

h \\ )
\\

0 x

Now plot the points P, whose coordinates are (r, ¢s:,) in a Cartesian
diagram. Since fniri1 —fntr=Anirs, the slope of the line P,P,,, is less
than 6 = arc tan (K/n).

Therefore the points P,, P, P,, ... lie above the line y =#h — « tan 6.
Let P, be the last of the points P,, P,,... which lie on the left of z=hcot 6,
so that £ gk cot 6.

Draw rectangles as shewn in the figure. The area of these rectangles
exceeds the area of the triangle bounded by y=h—atan @ and the axes;

that is to say
U'n+k—0'n._1=tn+tn+l+ oo + tn.*.k

>4$hicot 6 =4 A2 K 'n.
* The reader will see that the latter hypothesis involves a contradiction by using argﬁments.

of a precisely similar character to those which will be employed in dealing with the former
hypothesis.
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But | Ontk — Onar | Sl Onsi| + | Tna |
=(n+k).ol)+(n—-1).0(1)
=n.o(1),

since k < hnK-1, and k, K are independent of n.

Therefore, for a set of values of n tending to infinity,

hrK'n<n.o(l),

which is impossible since $h*K~* is not o (1) as n— .

This is the contradiction obtained on the hypothesis that lim ¢, >4 >0;
therefore lim ¢, <0. Similarly, by taking the corresponding case in which
t, < —h, we arrive at the result lim ¢, > 0. Therefore since lim 2, 2 lim ¢a,
we have mtn=li_2tn=0,

and so t, — 0.

®
That is to say 8, — 8, and 80 2 a, 18 convergent and its sum 18 s.
n=1

If a, be complex, we consider R (a,) and I(a,) separately, and find
that 3 R (a,) and ST (an) converge by the theorem just proved, and so
n=1

n=1

®©
3 a, converges.
n=1

The reader will see in Chapter 1x that this result is of great importance
in the modern theory of Fourier series.

Coroltary. If as(£) be a function of & such that 5 a, (§) 18 uniformly summabdle (C 1)
n=1
throughout a domain of values of & and if | an(€)| < K1, where K is independent of §,
; aq (&) converges uniformly throughout the domain,
n=1

For, retainihg the notation of the preceding section, if ¢, (¢) does not tend to zero
uniformly, we can find a positive number 4 independent of n and £ such that an infinite
sequence of values of n can be found for which ¢, (§2) > h or t, (¢4) < — /4 for some point £,
of the domain®; the value of ¢, depends on the value of # under consideration.

We then find, as in the original theorem,
K-1n<n.o(1)

for a set of values of n tending to infinity. The contradiction implied in the inequality
shewst that & does not exist, and so ¢, (£)—0 uniformly.

* It is assumed that a,, (£) is real; the extension to complex variables can be made as in the
former theorem. If no such number k existed, t, (§) would tend to zero uniformly.

+ It is eseential to observe that the constants involved in the inequality do not depend on &,.
For if, say, K depended on £,, K~! would really be a function of » and might be o (1) qua function
of n, and the inequality would not imply a contradiction.
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MISCELLANEOUS KXAMPLES.

et 1 2! 4| . s
1. Shew that /0 mdtfvi_a—“'*'ﬁ—'” when 2 is real and positive.

2. Discuss the representation of the function

f(x)=f(_)m¢(t)e“dt

(where z is supposed real and positive, and ¢ is a function subject to certain general con-
ditions) by means of the series
_$0) _¢0) ¢°(0)_
f (x) = T xg + s ves
Shew that in certain cases (e.g. ¢ (f)=e%) the series is absolutely convergent, and
represents f (z) for large positive values of »; but that in certain other cases the series is
the asymptotic expansion of f(x).

3. Shew that

- 'we-zxa'ldx~--1-+a—l +(a—l) (a-—2)+
2 z 23 28

for large positive values of z.
(Legendre, Ezercices de Calc. Int. (1811), p. 340.)

4. Shew that if, when 2 >0,

S

: 1 B B. B,
then ' @)~ gy =gt g~ gt

Shew also that f (x) can be expanded into an absolutely convergent series of the form

_ ® Cr .o
Sf(z)= kzl GFDGETY @+ h (Schlomilch.)

5. Shew that if the series 1+04+0-14+0+14+0+0-1+..., in which two zeros

precede each —1 and one zero precedes each +1, be ‘summed’ by Cesdro’s method,
its sum is §. (Euler, Borel.)

6. Shew that the series 1 -2!+44!~... cannot be summed by Borel’s method, but the
series 1 +0—2!40+4!+... can be so summed.

* This paper contains many references to recent developments of the subject.
+ A bibliography of the literature of summable series will be found on p. 372 of this
memoir. ‘



