
Chapter 7

Rigid Body Motion

In this chapter we will discuss the motion of a rigid body. Such an object
has a fixed shape and mass distribution. Therefore, it takes six coordinates to
specify the system: the three components of the center of mass position vector
R = (X,Y, Z), and the orientation of the body about a frame with the origin
at the center of mass of the body, which takes three angles.

First we remind the reader of the definition of the center of mass and relative
coordinates. For an arbitrary collection of point masses, labelled by a, with
mass ma and position, relative to some arbitrary origin, ra, the center of mass
position vector is defined by

MR =
∑

a

mara, M =
∑

a

ma. (7.1)

See Fig. 7.1. Let us denote the position of a particle relative to the center of
mass by r′a:

ra = R + r′a, (7.2)
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Figure 7.1: Illustration of the center of mass of a distribution of particles, marked
with a ×, located at position R, and the position vector ra of a mass point in
the distribution, as well as the position vector r′a relative to the center of mass.
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so from the definition of the center of mass,
∑

a

mar
′

a = 0. (7.3)

Because this equation holds for all time, the total momentum of the system is

P =
∑

a

ma(Ṙ + ṙ′a) =
∑

a

maṘ = MṘ = MV, (7.4)

where V is the velocity of the center of mass. Note that the relative momentum
sums to zero:

∑

a

maṙ
′

a =
∑

a

p′

a = 0. (7.5)

Now the force acting on a single particle is the sum of forces external to the
body and forces due to other particles in the body:

Fa = Fa,ext + Fa,int. (7.6)

By momentum conservation, the internal forces must cancel out when summed
over all the particles, so the total force on the system is just the sum of the
external forces:

Ṗ = MV̇ =
∑

a

(Fa,ext + Fa,int) =
∑

a

Fa,ext = Fext. (7.7)

Internal forces cannot cause a body to move. (For two-body forces, this follows
from Newton’s third law of motion.)

Now consider angular momentum,

L =
∑

a

ra × pa =
∑

a

mara × va =
∑

a

ma(R + r′a) × (V + v′

a)

= MR× V +
∑

a

mar
′

a × v′

a = LCM + Lrel. (7.8)

In the last step we used Eq. (7.3) and its time derivative, Eq. (7.5). The rate
of change of angular momentum is

L̇ = MR× V̇ +
∑

a

mar
′

a × v̇′

a

= R × Fext +
∑

a

r′a × (Fa,ext + Fa.int). (7.9)

Again, the internal forces cannot give a net torque on the system, so

L̇ = R × Fext +
∑

a

r′a × Fa,ext. (7.10)

The separate components have their respective torques,

L̇CM = R × Fext = τ ext, L̇rel =
∑

a

r′a × Fa,ext = τ
′

ext. (7.11)
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These statements about the cancellation of internal forces and torques follow
from the general action principle statement,

δW = G1 −G2, G =
∑

a

pa · δra. (7.12)

If the external force and torque are zero, the system is invariant under either a
rigid spatial translation or a rotation, so

G =
∑

a

pa · δra = δǫ ·
∑

a

pa = δǫ ·P, (7.13a)

G =
∑

a

pa · δω × ra = δω ·
∑

a

ra × pa = δω · L, (7.13b)

which says that P and L are constant, meaning that the internal force changes
neither the linear momentum nor the angular momentum.

The kinetic energy has a similar breakup,

T =
1

2

∑

a

maṙ
2
a =

1

2

∑

a

ma(Ṙ + ṙ′a)
2

=
1

2
MṘ2 +

1

2

∑

a

maṙ
′2
a = TCM + Trel. (7.14)

Now we specialize to a rigid body, which can only undergo rigid rotations
about its center of mass. If the instantaneous angular velocity vector is Ω, this
means the relative velocity of the ath particle is

v′

a = Ω× r′a. (7.15)

The relative kinetic energy is then

Trel =
1

2

∑

a

ma(Ω × r′a)
2 (7.16)

=
1

2

∑

a

maΩ · r′a × (Ω× r′a) =
1

2

∑

a

maΩ · (Ωr′2a − r′a(r
′

a · Ω))

=
1

2
Ω · I ·Ω, (7.17)

where we have introduced the moment of inertia tensor,

I =
∑

a

ma(r
′2
a 1− r′ar

′

a), (7.18)

or
Iij =

∑

a

ma(r
′2
a δij − r′air

′

aj). (7.19)

The moment of inertia tensor also occurs in the relative angular momentum,

Lrel =
∑

a

mar
′

a × (Ω × r′a) =
∑

a

ma(r
′2
a Ω− (r′a ·Ω)r′a), (7.20)
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or
Lrel = I ·Ω. (7.21)

Note that the moment of inertia tensor is symmetric,

I = IT , or Iij = Iji, (7.22)

and of course it is real. Therefore, there is an orthogonal basis, attached to the
body, in which I is diagonal. The directions of the basis vectors are called the
principal axes. In the principal axis system,

Iij = Iiδij . (7.23)

In the principal axis system

Trot =
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3), (7.24)

and
Lrel = (I1Ω1, I2Ω2, I3Ω3). (7.25)

Let the coordinates in the principal axis system be x, y, z. Then

Ix =
∑

a

ma(y
2
a + z2

a), Iy =
∑

a

ma(z
2
a + x2

a), Iz =
∑

a

ma(x
2
a + y2

a), (7.26)

so we have the necessary inequality

Ix + Iy > Iz, (7.27)

and so on by permutations.
The moment of inertia tensor reflects symmetries of the body. If in the

principal axis system I1 = I2 = I3, we call the body a spherical top; in that
case, the body has spherical symmetry and any set of Cartesian axes can serve
as principal axes. In that case I = I1 and so I is a constant, so then, and in no
other case, L̇rel = IΩ̇.

An asymmetric top has I1 6= I2 6= I3. A symmetric top has I1 = I2 6= I3.
Let us consider the free (no external forces) motion of a symmetric top. Then
L = I · Ω is a constant. As illustrated in Fig. 7.2, the symmetry axis of the
body is the z axis, and consider the plane defined by that axis and the constant
L. Choose the y axis to be perpendicular to that plane. Then because Ly = 0,
Ωy = 0, so Ω also lies in the plane defined by z and L. If r represents a point on
the symmetry axis, its velocity is v = Ω × r which is perpendicular to the z-L
plane, so the symmetry axis of the body precesses uniformly about the fixed
L direction; at the same time, the body rotates about the symmetry axis. Let
the angle between L and ẑ be θ. Then the angular velocity of the top rotating
about its symmetry axis is

Ωz =
Lz
Iz

=
L

I3
cos θ. (7.28)
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Figure 7.2: A free symmetric top with symmetry axis along the z axis. The
x, y, z axes shown are the principal body axis system. The conserved angular
momentum L and the z body axis define a plane, while the y axis is chosen to
be perpendicular to that plane, and the x axis lies in that plane, both of which
are perpendicular to z, of course. Let the angle between z and L be θ. Because
Ly = I2Ω2 = 0, the angular velocity Ω lies in the x-y plane. The result is that
the symmetry axis z precesses uniformly about the direction of L, maintaining
a constant angle θ with respect to that axis, while simultaneously the body
rotates (spins) about the symmetry axis z.

The precessional velocity Ωp is related to the component of Ω in the x direction
(which lies in the z-L plane) by

Ωx = Ωp sin θ =
L1

I1
=
L sin θ

I1
, (7.29)

so the precessional velocity is

Ωp =
L

I1
. (7.30)

7.1 Euler Angles

Now we have to discuss how the body principal axis system rotates relative to
an inertial system, or a system with origin at the center of mass of the body, but
with axes parallel to an inertial system of coordinate axes. Conventionally, this
is done in terms of three Euler angles. These are illustrated in Fig. 7.3. We start
with the CM system with axes parallel to those in an inertial frame, where the
coordinates are designated (x, y, z). First we rotate through an angle φ about the
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Figure 7.3: The three Euler angles describing the transition between a coordi-
nate system with axes parallel to an inertial system of Cartesian coordinates,
and the body principal axis system. The former coordinates are designated
(x, y, z) and the latter (x′′′, y′′′, z′′′). The meaning of the Euler angles (φ, θ, ψ)
is given in the text.

z axis, going to a coordinate system with (x′, y′, z′ = z). Second, we rotate about
the x′ axis through an angle θ giving us coordinates (x′′ = x′, y′′, z′′). Finally
we rotate through an angle ψ about the z′′ axis, carrying us to the principal axis
system, (x′′′, y′′′, z′′′ = z′′). In this way we can reach any desired orientation
of the body. [In quantum mechanics, the conventional second rotation is about
the y′ axis.] The line x′ = x′′ is called the line of nodes.

Each of these successive rotations is a simple rotation about a single axis,
and can be described by rotation matrices:

R1 =





cosφ sinφ 0
− sinφ cosφ 0

0 0 1



 , R2 =





1 0 0
0 cos θ sin θ
0 − sin θ cos θ



 , R3 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1



 ,

(7.31)
and so the net rotation is given by the product of the matrices, taken from right
to left:

R3R2R1 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









1 0 0
0 cos θ sin θ
0 − sin θ cos θ









cosφ sinφ 0
− sinφ cosφ 0

0 0 1





=





cosφ cosψ − sinφ cos θ sinψ sinφ cosψ + cosφ cos θ sinψ sin θ sinψ
− cosφ sinψ − sinφ cos θ cosψ − sinφ sinψ + cosφ cos θ cosψ sin θ cosψ

sinφ sin θ − cosφ sin θ cos θ



 .

(7.32)
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Using these we can rotate an arbitrary angular velocity to the body system. The
velocity corresponding to a φ rotation only in the original coordinate system is

Ωφ =





0
0

φ̇



 , (7.33)

which turns into, in the body system

Ω̄φ = R3R2R1Ωφ =





φ̇ sin θ sinψ

φ̇ sin θ cosψ

φ̇ cos θ



 . (7.34)

A velocity corresponding to a θ rotation only requires only one subsequent
rotation,

Ω̄θ = R3Ωθ =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









θ̇
0
0



 =





θ̇ cosψ

−θ̇ sinψ
0



 . (7.35)

A velocity corresponding to a ψ rotation only requires no subsequent rotation

Ω̄ψ = Ωψ =





0
0

ψ̇



 . (7.36)

Thus a general angular velocity in the body principal axis system is the sum of
these three components:

Ω̄ = Ω̄φ + Ω̄θ + Ω̄ψ =





θ̇ cosψ + φ̇ sin θ sinψ

−θ̇ sinψ + φ̇ sin θ cosψ

φ̇ cos θ + ψ̇



 . (7.37)

This result can also be verified geometrically.
Let us consider the example of the free symmetric top again, where I1 =

I2 6= I3. Then, the kinetic energy of the top is

T =
1

2
I1(θ̇

2 + φ̇2 sin2 θ) +
1

2
I3(φ̇ cos θ + ψ̇)2. (7.38)

To describe free motion, L̇ = 0, let us choose the fixed direction of L to coincide
with the fixed z axis. In this case we can, without loss of generality, assume
ψ = 0 at one instant, but, of course, not ψ̇ = 0. Then in the principal axis
system, Ω1 = θ̇, Ω2 = φ̇ sin θ, Ω3 = φ̇ cos θ + ψ̇. Our choice of ψ = 0 means
that the principal axis x′′′ is the line of nodes and is perpendicular to L. Thus
(subscripts refer to principal axes) L1 = I1Ω1 = I1θ̇ = 0, or θ̇ = 0. That is, the
angle between the symmetry axis and the direction of the angular momentum,
θ, is a constant. The second principal axis component of L is

L2 = I2Ω2 = I2φ̇ sin θ = L sin θ, (7.39)
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so φ̇ = L/I2, as we found before. This is the precessional velocity of the top.
Finally, the third principal axis component is

L3 = I3Ω3 = L cos θ, (7.40)

or Ω3 = (L/I3) cos θ, which is the spin velocity, the rotational velocity of the
body about its symmetry axis.

7.2 Euler’s equations

Now we want to relate the motion of the body in the body system to that in the
fixed system of coordinates. Any vector A changes both due to its infinitesimal
change in the body system, δ′A and the change that a vector makes under a
rotation:

δA = δ′A + δω × A, (7.41)

or, dividing by δt, we see how the time derivative in the fixed system is composed
of two parts,

dA

dt
=
d′A

dt
+ Ω× A, Ω =

dω

dt
. (7.42)

Thus, the equation of motion of the center of mass becomes in the body system

dP

dt
= F =

d′P

dt
+ Ω × P, (7.43)

which means in the body system

F1 =
d′P1

dt
+ Ω2P3 − Ω3P2 = M

(

d′V1

dt
+ Ω2V3 − Ω3V2

)

, (7.44)

and so on by cyclic permutations.
The angular momentum equation of motion is

dL

dt
= τ =

d′L

dt
+ Ω × L, (7.45)

in the body system. Now in the body system

L = (L1, L2, L3) (7.46)

so
τ1 = I1Ω̇1 + Ω2I3Ω3 − Ω3I2Ω2 = I1Ω̇1 + (I3 − I2)Ω2Ω3, (7.47)

and so on by cyclic permutations. These equations are called Euler’s equations.
In the following we will drop the prime for derivatives in the body (rotating)
system.

Now for the third time let us revisit the free rotation of a symmetric top,
where I1 = I2 6= I3 and τ = 0. The Euler equations then read

dΩ1

dt
=
I1 − I3
I1

Ω2Ω3,
dΩ2

dt
= −I1 − I3

I1
Ω1Ω3,

dΩ3

dt
= 0. (7.48)
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Thus Ω3 is constant, and we can define the frequency

ω = Ω3
I3 − I1
I1

, (7.49)

so the equations for Ω1, Ω2 are

Ω̇1 = −ωΩ2, Ω̇2 = ωΩ1, (7.50)

which implies
Ω̈1 = −ω2Ω1. (7.51)

So with a choice of initial time, the solution is

Ω1 = A cosωt, Ω2 = A sinωt. (7.52)

This says that the magnitude A of the transverse (⊥ to symmetry axis) angular
velocity is constant, and that the angular velocity precesses with angular velocity
ω = ẑ′′′ω about the symmetry axis of the top. Likewise the angular momentum
precesses about the axis of the top with the same velocity.

This result, of course, must agree with that found previously. We refer to the
Euler angles. We note that that the angular velocity of L about the symmetry
axis, the z′′′ axis, is −ψ̇. Now the angular momentum along that direction is
L3 = L cos θ = I3Ω3, and we recall from Eq. (7.37) that Ω3 = φ̇ cos θ + ψ̇, and
so

ψ̇ = −φ̇ cos θ + Ω3 = − L

I2
cos θ + Ω3 =

I1 − I3
I1

Ω3, (7.53)

so ωp = −ψ̇ is the same precessional angular velocity found in Eq. (7.49).

7.3 Free motion of an asymmetric top

Without loss of generality now assume I3 > I2 > I1. We first prove that
rotations about the 1 or the 3 axis is stable, but not about the one possessing
the intermediate moment of inertia. This is rather easily seen from the Euler
equations,

I1Ω̇1 + (I3 − I2)Ω2Ω3 = 0, (7.54a)

I2Ω̇2 + (I1 − I3)Ω3Ω1 = 0, (7.54b)

I3Ω̇3 + (I2 − I1)Ω1Ω2 = 0, (7.54c)

because the second difference of moments of inertia is negative, while the others
are positive. Suppose the the initial motion is about the 1 axis,

Ω(0) = (Ω(0), 0, 0). (7.55)

which is consistent with the Euler equations if Ω(0) is constant. But now suppose
there is a small deviation away from Ω(0), say

Ω = Ω(0) + ǫΩ(1), (7.56)



74 Version of November 18, 2015 CHAPTER 7. RIGID BODY MOTION

where ǫ is a small parameter. Then, to first order in ǫ, the deviations in the
angular velocity satisfy

I1
dΩ

(1)
1

dt
= 0, (7.57a)

I2
dΩ

(1)
2

dt
+ (I1 − I3)Ω

(0)
1 Ω

(1)
3 = 0, (7.57b)

I3
dΩ

(1)
3

dt
+ (I2 − I1)Ω

(0)
1 Ω

(1)
2 = 0, (7.57c)

and then the last two equations imply

d2Ω
(1)
2

dt2
+ ω2Ω

(1)
2 = 0, (7.58)

where

ω2 =
(I1 − I3)(I1 − I2)

I2I3
Ω

(0)
1

2 (7.59)

is positive. This means that the transverse components of the angular velocity
undergo circular rotation about the 1 axis, and that the rotation about the 1
axis is stable. The same conclusion holds for rotation about the 3 axis (see
homework). However, if the initial angular velocity is about the 2 axis,

Ω(0) = (0,Ω(0), 0), (7.60)

and then we consider a small perturbation as in Eq. (7.56), the Euler’s equation
for the perturbations are

I2
dΩ

(1)
2

dt
= 0, (7.61a)

I1
dΩ

(1)
1

dt
+ (I3 − I2)Ω

(0)
2 Ω

(1)
3 = 0, (7.61b)

I3
dΩ

(1)
3

dt
+ (I2 − I1)Ω

(0)
2 Ω

(1)
1 = 0, (7.61c)

and then the last two equations are combined to read

d2Ω
(1)
3

dt2
− κ2Ω

(1)
3 = 0, κ2 = − (I2 − I1)(I2 − I3)

I1I3
Ω

(0)
2 , (7.62)

where κ2 is positive. Now the solutions are exponential,

Ω
(1)
3 ∝ e±κt. (7.63)

The exponentially growing solution means that the perturbation will grow rapidly,
and the original solution is unstable.
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7.4 General motion of a free asymmetric top

As we have seen many times previously, the Euler equation can be reduced
to quadratures. There are two constants of the motion, the energy and the
magnitude of the angular momentum,

E =
1

2
(I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3), (7.64a)

L2 = I2
1Ω2

1 + I2
2Ω2

2 + I2
3Ω3

2. (7.64b)

It is useful to think in three-dimensional angular momentum space. The first
equation here says that the angular momentum vector connects the center of
mass and the surface of an ellipsoid around that point, with semiaxes

(
√

2EI1,
√

2EI2,
√

2EI3). (7.65)

The second says that the angular momentum connects the center of mass to the
surface of a surrounding sphere with radius L. Thus L moves relative to the
body system on the intersection of these two surfaces. That these two surfaces
intersect follows from (we are still assuming I1 < I2 < I3)

2I1E = L2
1 +

I1
I2
L2

2 +
I1
I3
L2

3 < L2
1 + L2

2 + L2
3 = L2 < L2

3 +
I3
I2
L2

2 +
I3
I1
L2

1 = 2I3E,

(7.66)
or

2I1E < L2 < 2I3E, (7.67)

which says that the radius of the sphere is intermediate between the largest and
smallest semiaxes of the momentum ellipsoid, so there are curves of intersection.

Now we can easily solve the energy and momentum equations (7.64a), (7.64b)
for Ω2

1 and Ω2
3:

Ω2
3 =

2EI1 − L2 − I2(I1 − I2)Ω
2
2

I3(I1 − I3)
, (7.68a)

Ω2
1 =

2EI3 − L2 − I2(I3 − I2)Ω
2
2

I1(I3 − I1)
, (7.68b)

and when this is substituted into the 2nd Euler equation, we get,

dΩ2

dt
=

1

I2
√
I1I3

√

[L2 − 2EI1 − I2(I2 − I1)Ω2
2][2EI3 − L2 − I2(I3 − I2)Ω2

2].

(7.69)
Making the following simple changes of variable,

τ = t

√

(I3 − I2)(L2 − 2EI1)

I1I2I3
, s = Ω2

√

I2(I3 − I2)

2EI3 − L2
, (7.70)

we have
ds

dτ
=

√

(1 − s2)(1 − k2s2), (7.71)
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where

k2 =
(I2 − I1)(2EI3 − L2)

(I3 − I2)(L2 − 2EI1)
. (7.72)

Here we assume that L2 > 2EI2 so that 0 < k2 < 1. The turning points occur
at s = ±1, therefore, by symmetry, the time required to go from s = 0 to s = 1
is a quarter period of a complete motion, say from s = −1 to s = +1 and back
again.

As should be familiar by now, we can write the time in terms of an integral,

τ =

∫ s

0

ds′
√

(1 − s′2)(1 − k2s′2)
= F (arcsin s|k2), s ≤ 1. (7.73)

Here F is the elliptic integral of the first kind,

F (φ|m) =

∫ φ

0

dθ(1 −m sin2 θ)−1/2. (7.74)

When s = 1 the angular velocity has executed a quarter period, so the period
in τ is then given in terms of the complete elliptic integral K,

T̃ = 4K, K =

∫ 1

0

ds′
√

(1 − s′2)(1 − k2s′2)
= F (π/2|k2) ≡ K(k2), (7.75)

and then the physical period is given by

T = 4K(k2)

√

I1I2I3
(I3 − I2)(L2 − 2EI1)

. (7.76)

However, although the angular momentum precesses about the body sym-
metry axis with this period, the top does not rotate with this period relative
to the inertial system, but with a motion that also involves an incommensurate
period; see Landau and Lifshitz for further discussion. The top never returns
exactly to its original position!

7.5 Problems for Chapter 7

1. Discuss the motion of the free asymmetric top when 2EI2 > L2.

2. Prove that the formula for the period of the asymmetric top can be recast
in the form of a complete elliptic integral as in Eq. (7.76).


