
Chapter 6

Small Oscillations

We start by considering a system with one degree of freedom, described by the
Lagrangian,

L =
1

2
m(q)q̇2 − V (q), (6.1)

which yields the canonical momentum

p =
∂L

∂q̇
= m(q)q̇, (6.2)

which satisfies the equation of motion

ṗ = m(q)q̈ + m′(q)q̇2 =
∂L

∂q
=

1

2
m′(q)q̇2 − V ′(q), (6.3)

or

m(q)q̈ +
1

2
m′(q)q̇2 + V ′(q) = 0. (6.4)

The only property will will assume about the function m(q) is that it is positive.
If we have an equilibrium solution of this system, q0, for which

q̈0 = q̇0 = 0, and V ′(q0) = 0, V ′′(q0) > 0, (6.5)

that is, the particle is sitting at a minimum of the potential, we can consider
small oscillations about this equilibrium position. That is, write

q = q0 + δq, (6.6)

and expand the equation of motion (6.4) to first order in δq. Because of the
equilibrium conditions, the differential equation satisfied by δq is

m(q0)
d2

dt2
δq + V ′′(q0)δq = 0. (6.7)

Since both m(q0) and V ′′(q0) are positive constants, we may write them as

m = m(q0), k = V ′′(q0), (6.8)
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and then the small-fluctuation equation of motion reads

m
d2

dt2
δq + kδq = 0. (6.9)

This is the familiar equation for the harmonic oscillator, which has solution

δq = a cos(ωt + α), ω2 =
k

m
, (6.10)

where a and α are arbitrary real constants. We can also write this as

δq = Re aei(ωt+α) = Re Aeiωt, A = aeiα, (6.11)

where A is called the complex amplitude.

6.1 Driven Harmonic Oscillator

Now suppose we add a force, or driving, term to the Lagrangian of the harmonic
oscillator,

L =
1

2
mẋ2 − 1

2
kx2 + xF (t), (6.12)

where the force F is some prescribed function of t. The equation of motion is

ẍ + ω2x =
F (t)

m
. (6.13)

A general way to solve this equation is through a Green’s function, a function
which satisfies

(

d2

dt2
+ ω2

)

g(t, t′) = δ(t − t′). (6.14)

Then the solution to Eq. (6.13) is a particular solution plus a general solution
of the homogeneous equation (without the F term):

x(t) = x0(t) +

∫

∞

−∞

dt′g(t, t′)
F (t′)

m
, (6.15)

where

x0(t) = a cos(ωt + α). (6.16)

This is because
(

d2

dt2
+ ω2

)

x(t) =

∫

∞

−∞

dt′δ(t − t′)
F (t′)

m
=

F (t)

m
, (6.17)

because of the defining property of the δ function.
So we must find the Green’s function satisfying Eq. (6.14). We seek a solution

that is retarded, that is, we want the effect to come after the cause. Thus we
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want g(t, t′) = 0 for t < t′. On the other hand, for t > t′, the δ function is not
present, and so with some complex amplitudes A and B,

t > t′ : g(t, t′) = Aeiωt + Be−iωt. (6.18)

To solve the differential equation we see that g must be continuous at t = t′ (if
it were not, the second derivative would be more singular than a δ function), or

g(t, t′)

∣

∣

∣

∣

t=t′+ǫ

t=t′−ǫ

= Aeiωt′ + Be−iωt′ = 0. (6.19)

But the derivative of g must be discontinuous at t = t′, as we can see by
integrating the differential equation (6.14) over a small interval around t′:

∫ t′+ǫ

t′−ǫ

dt

(

d2

dt2
+ ω2

)

g(t, t′) =

∫ t′+ǫ

t′−ǫ

dt δ(t − t′) = 1. (6.20)

Because g is continuous , this says from the fundamental theorem of calculus

d

dt
g(t, t′)

∣

∣

∣

∣

t=t′+ǫ

t=t′−ǫ

= 1. (6.21)

Because g vanishes when t < t′ this reads

iωAeiωt′ − iωBe−iωt′ = 1. (6.22)

We solve the set of simultaneous equations (6.19) and (6.22) as follows. Multiply
Eq. (6.19) by iω and add to Eq. (6.22) to obtain

A =
1

2iω
e−iωt′ ; (6.23a)

on the other hand, if we subtract Eq. (6.22) from iω times Eq. (6.19), we get

B = − 1

2iω
eiωt′ . (6.23b)

Now, when we combine these results with the form (6.18), we get

g(t, t′) = θ(t − t′)
1

ω
sin ω(t − t′). (6.24)

Here, appears the Heaviside step-function,

θ(t − t′) =

{

1, t > t′,
0, t < t′.

(6.25)

We can easily check that this satisfies the required differential equation (6.14):

∂

∂t
g(t, t′) = δ(t − t′)

1

ω
sin ω(t − t′) + θ(t − t′) cosω(t − t′)

= θ(t − t′) cosω(t − t′), (6.26a)

∂2

∂t2
g(t, t′) = δ(t − t′) − θ(t − t′)ω sin ω(t − t′), (6.26b)
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which used
∂

∂t
θ(t − t′) = δ(t − t′), (6.27)

which, in turn, can be verified by integrating over t from t = t′ − ǫ to t = t′ + ǫ.
Now let’s use this Green’s function in Eq. (6.15) for the case of a sinusoidally

varying force,

F (t) = f cos(γt + β). (6.28)

Then

x(t) − x0(t) =

∫ t

−∞

dt′
f

mω
sin ω(t − t′) cos(γt′ + β)

=
f

mω

1

4i

∫ t

−∞

dt′
(

eiω(t−t′) − e−iω(t−t′)
) (

ei(γt′+β) + e−i(γt′+β)
)

=
f

4imω

[

eiωteiβ 1

i(γ − ω)
ei(γ−ω)t − e−iωteiβ 1

i(γ + ω)
ei(γ+ω)t

+ eiωte−iβ 1

i(−γ − ω)
e−i(γ+ω)t − e−iωte−iβ 1

i(−γ + ω)
e−i(γ−ω)t

]

=
f

4imω

[

1

i(γ − ω)
− 1

i(γ + ω)

]

[

ei(β+γt) + e−i(β+γt)
]

=
f

m

1

ω2 − γ2
cos(β + γt). (6.29)

Thus the motion of the oscillator is given by

x(t) = a cos(ωt + α) +
f

m

1

ω2 − γ2
cos(γt + β). (6.30)

When the two frequencies are close together, we see the phenomenon of beats.
That is, if γ = ω + ǫ, we can write the coordinate in complex form,

x(t) = Re
[

Aeiωt + Bei(ω+ǫ)t
]

= Re
[

A + Beiǫt
]

eiωt, (6.31)

so, effectively, there is a slowly varying amplitude

C = A + Beiǫt, (6.32)

which varies only slightly over the short period of oscillation, 2π/ω. With
A = aeiα, B = beiβ,

|C|2 = a2 + b2 + 2ab cos(ǫt + β − α); (6.33)

the amplitude varies periodically with frequency ǫ between the limits |a − b| <
|C| < a + b.

The limit ǫ → 0 corresponds to resonance, when the driving frequency is the
natural frequency of the oscillator. To take that limit, we expand the expression
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(6.30):

x(t) = a cos(ωt + α) +
f

m

1

ω2 − (ω + ǫ)2
cos((ω + ǫ)t + β)

= a cos(ωt + α) − f

2mωǫ
[cos(ωt + β) − ǫt sin(ωt + β)]

= ã cos(ωt + α) +
f

2mω
t sin(ωt + β), (6.34)

where the first term involves both a rescaling and a phase shift of the free
oscillator term,

ãeiα̃ = aeiα − f

2mωǫ
eiβ . (6.35)

The driving force results in an oscillation whose amplitude grows linearly with
t.

Perhaps a more convincing argument for this effect is obtained by returning
to Eq. (6.15), and setting γ = ω from the outset. Then

x(t) − x0(t) =
f

mω

∫ t

−∞

dt′
1

2i

(

eiω(t−t′) − e−iω(t−t′)
) 1

2

(

ei(ωt′+β) + e−i(ωt′+β)
)

=
f

4imω

(

Tei(ωt+β) − 1

2iω
e−i(ωt+β) − 1

2iω
ei(ωt+β) − Te−i(ωt+β)

)

=
f

2mω

[

T sin(ωt + β) +
1

2ω
cos(ωt + β)

]

. (6.36)

Here T is the time from when the driving force was turned on; so again we
see the linear growth in the oscillation amplitude with time, together with a
“renormalization” of the original free oscillation.

These results can be given in somewhat simpler form if we introduce complex
coordinates. The driven harmonic oscillator equation (6.12) can be written as

d

dt
(ẋ + iωx) − iω(ẋ + iωx) =

F

m
, (6.37)

or, if we define ξ = ẋ + iωx,

ξ̇ − iωξ =
F

m
. (6.38)

Then our Green’s function solution,

x(t) = x0(t) +

∫ t

−∞

dt′
1

ω
sin ω(t − t′)

F (t′)

m
(6.39)

implies

ẋ(t) = ẋ0(t) +

∫ t

−∞

dt′ cosω(t − t′)
F (t′)

m
, (6.40)

so

ξ = ξ0 +

∫ t

−∞

dt′eiω(t−t′) F (t′)

m
. (6.41)
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The energy of the harmonic oscillator is easily expressed in terms of this
complex coordinate:

E =
1

2
mẋ2 +

1

2
kx2 =

m

2
(ẋ − iωx)(ẋ + iωx) =

m

2
|ξ|2. (6.42)

Because of the driving force, the energy is not constant, but changes with time.
Suppose the particle is at rest before the application of the force, so x0 = ẋ0 =
ξ0 = 0. Then, in view of the time evolution equation (6.41), the energy acquired
over the course of the action of the force is proportional to the square of the
Fourier transform of the force:

E(t = ∞) =
1

2m

∣

∣

∣

∣

∫

∞

−∞

dt′e−iωt′F (t′)

∣

∣

∣

∣

2

. (6.43)

Example: Consider the above case with a sinusoidally varying driving force,
but which is only applied for a finite time T . That is, let

F (t) = f cos(γt + β)θ(t)θ(T − t). (6.44)

Then the Fourier transform is

F (ω) =

∫ T

0

dt e−iωtf
1

2

(

ei(γt+β) + e−i(γt+β)
)

=
f

2

[

eiβ 1

i(γ − ω)

(

ei(γ−ω)T − 1
)

+ e−iβ 1

−i(ω + γ)

(

e−i(ω+γ)T − 1
)

]

=
f

(γ − ω)
eiβei(γ−ω)T/2 sin(γ − ω)T/2

+
f

(ω + γ)
e−iβe−i(ω+γ)T/2 sin(ω + γ)T/2. (6.45)

As γ approaches ω, the second term remains oscillatory, while if (ω−γ)T/2 ≪ 1,
the first term grows linearly with T . Therefore if T is not too large,

|F (ω)| ≈ sin(ω − γ)T/2

ω − γ
f ≈ T

2
f, (6.46)

and the energy imparted to the oscillator is

E(T ) =
f2

8m
T 2, (6.47)

reflecting the linear growth in the amplitude we saw previously.

6.2 Normal Modes

Now suppose we have a system with s degrees of freedom, and a general La-
grangian of the form

1

2

∑

ij

Mij({q})q̇iq̇j − V ({q}), (6.48)
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that is, the kinetic energy term is quadratic in velocities, multiplied by coeffi-
cients depending on {q1, q2, . . . , qs}, and with a potential depending on all the
generalized coordinates qi. Now consider an equilibrium position, where all the

q̇i are zero, and the potential is a minimum, ∂
∂qi

V (qi)

∣

∣

∣

∣

qi=q0i

= 0. We want to

examine small oscillations about the equilibrium position,

qi = q0i + xi, q̇i = ẋi, (6.49)

where q0i represents the coordinate at equilibrium. Then, assuming that all the
second derivatives of the potential do not vanish at equilibrium, we can write,
to second order in xi’s,

L =
1

2

∑

ij

(Mij ẋiẋj − Kijxixj) , (6.50)

where

Mij = Mij({q0}), Kij =
∂2

∂qi∂qj
V ({q0}), (6.51)

which are symmetric
Mij = Mji, Kij = Kji. (6.52)

Both matrices are positive, in the sense that all their eigenvalues are positive
numbers. This is true of Kij because it corresponds to a minimum of the
potential. The corresponding equations of motion are

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0, or

∑

j

Mij ẍj =
∑

j

Kijxj , (6.53)

which, although linear, are rather complicated since they constitute a system of
s coupled equations. Can we decouple these?

To do so, it is convenient to adopt matrix notation. Introduce a column
vector

x =















x1

x2

x3

...
xs















, (6.54)

and a corresponding row vector (T = transpose)

xT = (x1, x2, x3, . . . , xs). (6.55)

Also define an s × s mass matrix, M, such that

(M)ij = Mij , (6.56)

and a corresponding “spring-constant” matrix, K,

(K)ij = Kij , (6.57)
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and then the Lagrangian has the more compact-looking form,

L =
1

2
ẋTMẋ − 1

2
xT Kx. (6.58)

Because of the symmetrical structure of the Lagrangian in the x’s and ẋ’s,
without loss of generality we may assume, as noted above, that M and K are
symmetric,

MT = M, KT = K, (6.59)

and furthermore they are real. Therefore, we know that M can be brought into
diagonal form, and we shall assume that all the diagonal elements then, the
eigenvalues, are strictly positive. This means we can invert the matrix M, and
take its square root. So let us define new coordinates y by

y = M1/2x, yT = xT M1/2 (6.60)

and then the Lagrangian can be written as

L =
1

2
ẏT ẏ − 1

2
yT Ω2y, Ω2 = M−1/2KM−1/2 > 0, (6.61)

where the last inequality means that the eigenvalues of the Ω2 matrix are all
greater than zero. The equation of motion can be written as

ÿ = −Ω2y. (6.62)

Since Ω2 is a real, symmetric matrix, we know it can be diagonalized. That
is, we want to find the eigenvalues of this matrix, which are all positive, denoted
by ω2

n, n = 1, 2, . . . , s, which are solutions of the eigenvalue equation

Ω2Q(n) = ω2
nQ

(n). (6.63)

This is a set of s linear homogeneous equations for the components of Q(n) =

({y(n)
i }); there can be a nonzero solution only if

det(Ω2 − ω2
n1) = 0, (6.64)

which, because M is nonsingular, detM 6= 0, is equivalent to

det(K− ω2
nM) = 0. (6.65)

Once we have found the eigenvectors Q(n) and eigenvalues ω2
n, the Lagrangian

can be recast in diagonal form,

L =
∑

n

(

1

2
Q̇(n)2 − 1

2
ω2

nQ(n)2

)

, (6.66)

just a sum of harmonic oscillators, which satisfy the equations of motion

Q̈(n) = −ω2
nQ(n). (6.67)
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Here we have expressed Q(n) as linear combinations of the original xi corrdi-
nates, Q(n)TQ(n) = Q(n)2 and likewise for the Q̇(n)’s and supplied a suitable
normalization factor.

To see how this works preceisely, define a matrix

Q = (Q(1),Q(2), . . . ,Q(s)), (6.68)

that is, the matrix constructed by placing in the kth column the column vector
Q(k). Note that, with a suitable choice of normalization, the Q(k) vectors are
orthonormal:

Q(i)T Q(j) = δij , (6.69)

because they are eigenvectors of a real symmetric matrix (which is therefore
also Hermitian):

Q(i)T Ω2Q(j) = ω2
jQ

(i)T Q(j) = ω2
i Q

(i)TQ(j), (6.70)

since Ω2 can act either to the left or right. Therefore, if the eigenvalues are
different, ω2

i 6= ω2
j , we conclude that

Q(i)TQ(j) = 0. (6.71)

If, by chance, two distinct eigenvectors have the same eigenvalue (“degeneracy”),
we can always choose the eigenvectors to be orthogonal, since they space a two-
dimensional space. And we choose the vectors to be of unit length, so Eq. (6.69)
is satisfied. This means that the matrix Q satisfies

QTQ = 1, (6.72)

where 1 is the unit matrix; that is, QT = Q−1. The matrix Q brings Ω2 into
diagonal form:

QTΩ2Q = diag(ω2
1 , ω

2
2 , . . . , ω

2
s). (6.73)

Let us define new normal mode coordinates ζ by

y = Qζ, (6.74)

where

ζ =













ζ(1)

ζ(2)

.

.

ζ(s)













. (6.75)

Then the Lagrangian becomes

L =
1

2
ẏT ẏ − 1

2
yT Ω2y =

s
∑

n=1

1

2
(ζ̇(n)2 − ω2

nζ(n)2). (6.76)

This is what is meant by Eq. (6.66). In terms of the original coordinates,

ζ(n) = Q(n)Ty = Q(n)TM1/2x. (6.77)
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• • •m m mk k

x y z

Figure 6.1: Three equal mass particles, connected to each other by two springs
as shown. The coordinates x, y, and z are relative to the equilibrium positions
of the particles. Only motion along the line shown is considered.

6.2.1 Vibrations of a linear molecule

Consider three equal mass points, connected by two massless springs, as shown
in Fig. 6.1. This is a simple model of a linear molecule consisting of three
atoms each of mass m with harmonic restoring forces, represented by the spring
constant k. Let the positions of the atoms, relative to their equilibrium posi-
tions, be x, y, and z, respectively; we only consider motion along the line. The
Lagrangian is

1

2
mẋ2 +

1

2
mẏ2 +

1

2
mż2 − k

2
(x − y)2 − k

2
(y − z)2. (6.78)

Thus the mass matrix is diagonal, but the spring constant matrix is not:

M = m





1 0 0
0 1 0
0 0 1



 , K = k





1 −1 0
−1 2 −1

0 −1 1



 . (6.79)

It is simple to calculate

det(K − ω2M) = mω2(k − mω2)(mω2 − 3k). (6.80)

Thus, there are three normal modes, with characteristic squared-frequencies

ω2 = 0, ω2 =
k

m
, ω2 = 3

k

m
. (6.81)

And the (redundant) equations for the components of Q(n) = {q(n)
i } are

(k − mω2)q1 − kq2 = 0, (6.82a)

−kq1 + (2k − mω2)q2 − kq3 = 0, (6.82b)

−kq2 + (k − mω2)q3 = 0. (6.82c)
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The zero frequency mode has solution q1 = q2 = q3, so the normalized eigen-
vector is

Q(1) =
1√
3





1
1
1



 . (6.83)

The corresponding normal coordinate is

ζ(1) =
1√
3
(1, 1, 1)

√
m





x
y
z



 =

√

m

3
(x + y + z). (6.84)

This evidently corresponds to the rigid center of mass motion of the entire
system, which moves with constant velocity since there is no force acting on
the molecule as a whole. The ω2 = k/m mode has solution q2 = 0, q1 = −q3,
that is the center of the molecule is at rest, and the two outlying atoms move
oppositely to each other:

Q(2) =
1√
2





1
0
−1



 , (6.85)

which means that the corresponding normal coordinate is

ζ(2) =
1√
2
(1, 0,−1)

√
m





x
y
z



 =

√

m

2
(x − z). (6.86)

Finally, the ω2 = 3k/m mode has solution q1 = q3 = −1/2q2, so

Q(3) =
1√
6





1
−2
1



 , (6.87)

so the corresponding normal coordinate is

ζ(3) =
1√
6
(1,−2, 1)

√
m





x
y
z



 =

√

m

6
(x + z − 2y). (6.88)

Then the Lagrangian (6.78) is equal to

L =
1

2

[

ζ̇(1)2 + ζ̇(2)2 + ζ̇(3)2 − k

m
ζ(2)2 − 3k

m
ζ(3)2

]

, (6.89)

which explicitly displays the frequencies found in Eq. (6.81).
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6.3 Damped Harmonic Oscillator

There is no such thing as a harmonic oscillator in nature. A real pendulum, say,
is subject to frictional forces at the point of support, and with the air. These
forces are difficult to describe in detail. However, for many purposes, we can
describe them by saying there is a damping term in the equation of motion,
described by a force proportional to the particle’s velocity, Ffriction = −αṙ,
where α is a positive constant. For a one-dimensional oscillator, this implies
that the differential equation

mẍ + kx + αẋ = 0, (6.90)

or with

ω2
0 =

k

m
, γ =

α

m
, (6.91)

we obtain

ẍ + γẋ + ω2
0x = 0. (6.92)

Let us write the solution in terms of a complex exponential,

x(t) = Re Aeiωt, A = aeiα, (6.93)

where a and α are real. The frequency then is given by the quadratic equation

−ω2 + iγω + ω2
0 = 0, (6.94)

or, completing the square,

(

ω − i
γ

2

)2

+
γ2

4
= ω2

0 . (6.95)

The roots are

ω =
iγ

2
±

√

ω2
0 − γ3

4
. (6.96)

The solution to the original differential equation can then be written as

x(t) = e−γt/2Re Aei
√

ω2

0
−γ2/4t. (6.97)

We assume here the usual case that γ/2 < |ω0|. The main effect of the friction
is the exponential damping term; whatever motion was originally present will
damp out with the square of the amplitude, which is proportional to the energy,
decreasing like e−γt. In addition there is a shift in the frequency, which is small
if, as usual, γ/2 ≪ ω0. The frequency is decreased as a result of the dissipative
force, as one would expect.

Now suppose we add a driving force, so the Eq. (6.90) is replaced by

mẍ + αẋ + kx = F (t), (6.98)
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or
(

d2

dt2
+ γ

d

dt
+ ω2

0

)

x(t) =
F (t)

m
. (6.99)

A general solution of this equation is a general solution of the homogeneous part,
x0(t), which will have the form (6.97), which will damp out in a characteristic
time of order 1/γ, and a particular solution which will respond to the driving
force. In particular, if the driving force is oscillatory with frequency ν,

F (t) = Re feiνt, (6.100)

the steady state solution we seek has also the same frequency,

x(t) = Re Beiνt. (6.101)

The equation relating the amplitudes B and f is

(−ν2 + iνγ + ω2
0)B =

f

m
, (6.102)

which is immediately solved:

B =
f

m

1

ω2
0 − ν2 + iνγ

=
f

m

ω2
0 − ν2 − iνγ

(ω2
0 − ν2)2 + ν2γ2

. (6.103)

In this equation, without loss of generality, we can choose f to be real and
positive, so that B = beiβ , where β is the relative phase between B and f . The
magnitude of B is

b =
f

m

1
√

(ω2
0 − ν2)2 + (νγ)2

, (6.104)

and its phase is given by

tan β =
Im B

Re B
=

−νγ

ω2
0 − ν2

. (6.105)

Note that if ν < ω0, this is in the 4th quadrant, so the phase β ∈ [−π/2, 0]. If
ν > ω0, this is in the 3rd quadrant, and β ∈ [−π,−π/2]. At resonance, ν = ω,
β = −π/2. The behavior is perhaps most easily seen near resonance, where
ν = ω0 + ǫ, ǫ ≪ ω0. Then

b =
f

2mω0

1
√

ǫ2 + γ2/4
, (6.106)

and

tan β =
−γ

−2ǫ
. (6.107)

The negative relative phase means that the response lags behind the driving
force. The phase goes from zero to −π over a small range of detuning,

∆ǫ ∼ γ. (6.108)
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Figure 6.2: The phase shift β given by Eq. (6.105) as a function of the driving
frequency ν. What’s plotted here is for γ = 0.1, ω0 = 1, that is, everything is
expressed in units of ω0.

Because of the damping, the amplitude at resonance is finite:

b(ν = ω0) =
f

mω0γ
. (6.109)

Fig. 6.2 shows how the phase changes as the driving frequency passes through
resonance.

6.3.1 Energy absorbed by oscillator

The power, the energy supplied by the force per unit time, is given by

P = F ẋ. (6.110)

In the above, we calculated x(t) in terms of a complex amplitude,

x(t) = ReBeiνt (6.111)

in terms of
F (t) = Re feiνt (6.112)

so

P = Re (feiνt)Re (Biνeiνt) =
1

4

(

feiνt + f∗e−iνt
) (

iνBeiνt − iνB∗e−iνt
)
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=
1

4
(−iνfB∗ + iνf∗B) + rapidly oscillating terms, (6.113)

where the rapidly oscillating terms are proportional to either e2iνt or e−i2νt.
The latter disappear when we average the power over one cycle. So the time-
averaged power is, when we insert Eq. (6.103)

P̄ =
1

2
Re f(−iν)

f∗

m

ω2
0 − ν2 + iνγ

(ω2
0 − ν2)2 + ν2γ2

=
|f |2
2m

ν2γ

(ω2
0 − ν2)2 + ν2γ2

. (6.114)

When we are near resonance, ν = ω0 + ǫ, this becomes

P̄ =
|f |2
4m

γ/2

ǫ2 + γ2/4
. (6.115)

At the peak,

P̄m =
|f |2
2mγ

, (6.116)

which gets very large for small γ, and the power drops to half this value at
ǫ = ±γ/2. The following figures shown that the approximation (6.115) is not
really very good compared to the exact formula (6.114) away from the resonance.

We can calculate the total power absorbed at all frequencies by integrating
over all ν: Using the approximation (6.115) we find

∫

dǫP̄ (ǫ) =
|f |2
4m

γ

2

∫

∞

−∞

dǫ
1

ǫ2 + (γ/2)2
=

|f |2
4m

∫

∞

−∞

dy

y2 + 1
=

|f |2π
4m

. (6.117)

Remarkably, this is independent of the damping parameter. The same result is
obtained if the exact formula (6.114) is used.

6.4 Problems for Chapter 6

1. Verify by direct calculation that the Lagrangian (6.78) takes on the di-
agonal form (6.89) when the normal coordinates (6.84), (6.86), (6.88) are
substituted.

2. Show that when the exact formula for the time-averaged power (6.114)
is integrated over all frequencies, the same result found in Eq. (6.117) is
obtained. Hint: Use the residue theorem.
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Figure 6.3: Comparison of the exact formula (6.114) for the power absorbed by
a damped oscillator with the approximate formula (6.115), for ω0 = 1, ν = 0.1,
as a function of the driving frequency ν.

Figure 6.4: Same as previous figure, except looking away from the peak.
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Figure 6.5: Relative error of the approximation (6.115) compared to the exact
result (6.114) for the same parameters.


