
Chapter 5

Decay and Scattering

5.1 Two-Body Decay

First we consider the 2-body kinematics of a relativistic decay process, such as
that of a pion into a muon and a neutrino:

π+ → µ+νµ. (5.1)

We suppose that the decaying particle has mass M and the two decay products
have masses m1 and m2. We first consider the frame in which the decaying
particle is at rest.

Momentum conservation says

0 = p1 + p2, (5.2)

while energy conservation states

Mc2 = E1 + E2, Ea =
√

p2
ac2 + m2

ac4. (5.3)

Squaring the latter equation,

(Mc2)2 = E2
1 + E2

2 + 2E1E2, (5.4)

and rearranging and squaring again, we get

(E2
1 − E2

2)2 − 2(Mc2)2(E2
1 + E2

2) + (Mc2)4. (5.5)

Substituting in

E2
1 = p2c2 + m2

1c
4, E2

2 = p2c2 + m2
2c

4, (5.6)

we obtain

p2 =
c2

4M2

[

M2 − (m1 + m2)
2
] [

M2 − (m1 − m2)
2
]

. (5.7)
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Figure 5.1: Decay of a particle with momentum P into two equal-mass particles,
moving symmetrically with respect to P.

Note that this requires that M > m1 + m2, otherwise this decay channel is
closed.

Some special cases of this general formula are noteworthy. If the two daugh-
ter particles are of equal mass, m1 = m2 = m, the formula for the momentum
of each is

p =
Mc

2

√

1 −
4m2

M2
. (5.8)

And if one of the masses is zero, say m2 = 0, and m1 = m, we have

p =
Mc

2

(

1 −
m2

M2

)

(5.9)

How does the same process look in the frame where the original particle is
moving with velocity v, say along the z axis, perpendicular to the original decay
axis? Its z component of momentum is then

P = Mγv = Mcγβ, γ =

(

1 −
v2

c2

)−1/2

. (5.10)

For simplicity, let’s consider the case of equal mass daughters, and in which,
in the rest frame, the daughters move along the x axis. The decay process
is then as shown in Fig. 5.1. Due to these simplifying assumptions, the two
daughter momenta have equal magnitude, and make equal and opposite angles
with respect to the z axis,

p = p1 = p2, θ1 = −θ2 = θ. (5.11)

Momentum in the z direction is conserved,

P = 2p1 cos θ. (5.12)

Energy is also conserved:
2E1 = E = Mc2γ, (5.13)
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or

4(p2c2 + m2c4) = P 2c2 + M2c4. (5.14)

This tells us that

p =
1

2

√

P 2 + (M2 − 4m2)c2, (5.15)

and from Eq. (5.12),

cos θ =

√

1

1 + (M2−4m2)c2

P 2

. (5.16)

We can verify these results by performing a Lorentz transformation. Because
the momentum of a particle is a four-vector, pµ = (E/c,p), and in the rest frame
of the decaying particle, the momentum of one of the daughters is

pµ =

(

Mc

2
,
Mc

2

√

1 −
4m2

M2
, 0, 0

)

. (5.17)

Now we make a Lorentz transformation (boost) in the z direction with velocity
v:

p0′
1 = γ(p0

1 + βpz
1) = γp0

1 = γ
Mc

2
, (5.18a)

pz′
1 = γ(pz

1 + βp0
1) = γβ

Mc

2
=

1

2
P, (5.18b)

px′
1 = px

1 =
Mc

2

√

1 −
4m2

M2
. (5.18c)

Indeed,

px′
1

pz′
1

= tan θ =
Mc

P

√

1 −
4m2

M2
, (5.19)

is equivalent to Eq. (5.16). For more general situations see Problem 1.

5.2 Nonrelativistic scattering

Let us consider the scattering of a particle by a central potential, as sketched
in Fig. 5.2. We work in relative coordinates, where the reduced mass is µ =
m1m2/(m1+m2). The central potential is V (r). At infinity, the particle kinetic
energy is E = 1

2µv2
∞

. The energy, of course, is conserved, as is the angular
momentum, which at infinity is Lz = µbv∞. The angle through which the
particle turns is given by the indefinite integral [see Eq. (2.31)],

φ =

∫

Lzdr/r2

√

2µ(E − V (r)) − L2
z/r2

. (5.20)
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Figure 5.2: Scattering by a central potential. The particle comes from infinity
with an impact parameter b, and is scattered through an angle χ. The distance
of closest approach, r0 occurs where the particle has moved through an angle
φ0 relative to the center.

The angle at closest approach is

φ0 =

∫

∞

r0

Lzdr/r2

√

2µ(E − V (r)) − L2
z/r2

=

∫

∞

r0

b
r2 dr

√

1 − b2

r2 − 2V
µv2

∞

. (5.21)

Because of the symmetry of the orbit about the midpoint, the scattering angle
is related to φ0 by

χ = |π − 2φ0|, (5.22)

where the absolute value appears because 2φ0 might be bigger than π, for ex-
ample, with an attractive potential.

Equation (5.21) determines the scattering angle in terms of the impact pa-
rameter, χ(b). We will assume here this is a monotone function, so it may be
inverted, to give b(χ). (It fails to be so, for example, for scattering of magnetic
monopoles, but this can be dealt with by summing over the various branches.)
The way scattering is described is in terms of a scattering cross section,

dσ =
dN

n
, (5.23)

where dN is the number of particles per unit time scattered through angles
between χ and χ + dχ, and n is the number of particles incident per unit time
per unit area. Thus, dσ is an area, which is here the area of the annulus between
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radii b and b + db:

dσ = 2πb db = 2πb

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

dχ, (5.24)

where the absolute value sign refers to the fact that usually χ decreases as b
increases. It is usual to express the differential cross section in terms of the solid
angle subtended,

dΩ = 2π sinχ dχ, (5.25)

so
dσ

dΩ
=

b

sin χ

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

. (5.26)

Now we specialize to the Coulomb potential,

V (r) = −
α

r
. (5.27)

Then our equation for the central angle is, making the usual substitution 1/r =
s,

φ0 =

∫ 1/r0

0

ds
√

1
b2 + α2

µ2b4v4
∞

−
(

s − α
µb2v2

∞

)2
. (5.28)

The indefinite integral of this is

φ = φ̃ + arcsin
bs − ξ
√

1 + ξ2
, ξ =

α

µv2
∞

b
, φ̃ = arcsin

ξ
√

1 + ξ2
. (5.29)

That is, the orbit is determined by

b

r
= ξ +

√

1 + ξ2 sin(φ − φ̃). (5.30)

The minimum distance r0 is achieved when φ − φ̃ = π
2 ; therefore,

cosφ0 = cos(π/2 + φ̃) = − sin φ̃ = −
ξ

√

1 + ξ2
(5.31)

This, in turn, implies that ξ2 = cot2 φ0. Thus, the impact parameter is related
to the central angle by

b2 =
α2

µ2v4
∞

tan2 φ0, (5.32)

which says that

|b db| =
α2

µ2v4
∞

sin φ0 sec3 φ0 dφ0. (5.33)

Finally, substituting φ0 = 1
2 (π − χ), we obtain from Eq. (5.26) the famous

Rutherford scattering formula

dσ

dΩ
=

α2

(2µv2
∞

)2
1

sin4 χ/2
. (5.34)
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5.3 Problems for Chapter 5

1. Of course, a moving particle need not decay in the symmetrical manner
shown in Fig. 5.1. Solve the equations of energy and momentum conserva-
tion in the case that one daughter has magnitude of momentum p1, with
the momentum making an angle θ1 with respect to the velocity of the
decaying particle, and the second daughter having momentum magnitude
p2, with the momentum making an angle θ2 with respect to the direction
of P. Show that there is one undertermined quantity, say θ2. What is
the distribution of daughter particle energies? Obtain the same result by
performing a Lorentz transformation.


