
Chapter 1

Action Principles

The Newtonian synthesis, building on the work of many others, especially of
Galileo, should be familiar. You have probably also had some exposure to the
Lagrangian, the Euler-Lagrange equations, and to the Hamiltonian principle.
Here we wish to show that a mechanical system of point particles, nonrela-
tivistically and relativistically, is derivable from a Lagrange-Hamilton action
principle, generalizing earlier principles of least action.

We start by reviewing and generalizing the Lagrange-Hamilton principle
for a single particle. The action, W12, is defined as the time integral of the
Lagrangian, L, where the integration extends from an initial configuration or
state at time t2 to a final state at time t1:

W12 =

∫ t1

t2

dtL. (1.1)

The integral refers to any path, any line of time development, from the initial
to the final state, as shown in Fig. 1.1. The actual time evolution of the system
is selected by the principle of stationary action: In response to infinitesimal
variations of the integration path, the action W12 is stationary—does not have
a corresponding infinitesimal change—for variations about the correct path,
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Figure 1.1: A possible path from initial state to final state.
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provided the initial and final configurations are held fixed,

δW12 = 0. (1.2)

This means that, if we allow infinitesimal changes at the initial and final times,
including alterations of those times, the only contribution to δW12 then comes
from the endpoint variations, or

δW12 = G1 − G2, (1.3)

where Ga, a = 1 or 2, is a function depending on dynamical variables only at
time ta. In the following, we will consider three different realizations of the
action principle, where, for simplicity, we will restrict our attention to a single
particle.

1.1 Lagrangian Viewpoint

The nonrelativistic motion of a particle of mass m moving in a potential V (r, t)
is described by the Lagrangian

L =
1

2
m

(

dr

dt

)2

− V (r, t). (1.4)

Here, the independent variables are r and t, so that two kinds of variations can
be considered. First, a particular motion is altered infinitesimally, that is, the
path is changed by an amount δr:

r(t) → r(t) + δr(t). (1.5)

Second, the final and initial times can be altered infinitesimally, by δt1 and δt2,
respectively. It is more convenient, however, to think of these time displacements
as produced by a continuous variation of the time parameter, δt(t),

t → t + δt(t), (1.6)

so chosen that, at the endpoints,

δt(t1) = δt1, δt(t2) = δt2. (1.7)

The corresponding change in the time differential is

dt → d(t + δt) =

(

1 +
dδt

dt

)

dt, (1.8)

which implies the transformation of the time derivative,

d

dt
→

(

1 −
dδt

dt

)

d

dt
. (1.9)
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Because of this redefinition of the time variable, the limits of integration in the
action,

W12 =

∫

1

2

[

1

2
m

(dr)2

dt
− dt V

]

, (1.10)

are not changed, the time displacement being produced through δt(t) subject
to (1.7). The resulting variation in the action is now

δW12 =

∫

1

2

dt

{

m
dr

dt ·
d

dt
δr − δr·∇V −

dδt

dt

[

1

2
m

(

dr

dt

)2

+ V

]

− δt
∂

∂t
V

}

=

∫

1

2

dt

{

d

dt

[

m
dr

dt ·δr −
(

1

2
m

(

dr

dt

)2

+ V

)

δt

]

+ δr·
[

−m
d2

dt2
r − ∇V

]

+ δt

(

d

dt

[

1

2
m

(

dr

dt

)2

+ V

]

−
∂

∂t
V

)}

, (1.11)

where, in the last form, we have shifted the time derivatives (integrated by
parts) in order to isolate δr and δt.

Because δr and δt are independent variations, the principle of stationary
action implies that the actual motion is governed by

m
d2

dt2
r = − ∇V, (1.12)

d

dt

[

1

2
m

(

dr

dt

)2

+ V

]

=
∂

∂t
V, (1.13)

while the total time derivative gives the change at the endpoints,

G = p·δr − Eδt, (1.14)

with

momentum = p = m
dr

dt
, energy = E =

1

2
m

(

dr

dt

)2

+ V. (1.15)

Therefore, we have derived Newton’s second law [the equation of motion in
second-order form], (1.12), and, for a static potential, ∂V/∂t = 0, the conser-
vation of energy, (1.13). The significance of (1.14) will be discussed later in
Section 4.

1.2 Hamiltonian Viewpoint

Using the above definition of the momentum, we can rewrite the Lagrangian as

L = p·
dr

dt
− H(r,p, t), (1.16)
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where we have introduced the Hamiltonian

H =
p2

2m
+ V (r, t). (1.17)

We are here to regard r, p, and t as independent variables in

W12 =

∫

1

2

[p·dr − dtH]. (1.18)

The change in the action, when r, p, and t are all varied, is

δW12 =

∫

1

2

dt

[

p·
d

dt
δr − δr·

∂H

∂r
+ δp·

dr

dt
− δp·

∂H

∂p
−

dδt

dt
H − δt

∂H

∂t

]

=

∫

1

2

dt

[

d

dt
(p·δr − Hδt) + δr·

(

−
dp

dt
−

∂H

∂r

)

+δp·
(

dr

dt
−

∂H

∂p

)

+ δt

(

dH

dt
−

∂H

∂t

)]

. (1.19)

The action principle then implies

dr

dt
=

∂H

∂p
=

p

m
, (1.20)

dp

dt
= −

∂H

∂r
= −∇V, (1.21)

dH

dt
=

∂H

∂t
, (1.22)

G = p·δr − Hδt. (1.23)

In contrast with the Lagrangian differential equations of motion, which involve
second derivatives, these Hamiltonian equations contain only first derivatives;
they are called first-order equations. They describe the same physical system,
because when (1.20) is substituted into (1.21), we recover the Lagrangian-
Newtonian equation (1.12). Furthermore, if we insert (1.20) into the Hamil-
tonian (1.17), we identify H with E. The third equation (1.22) is then identical
with (1.13). We also note the equivalence of the two versions of G.

But probably the most direct way of seeing that the same physical system
is involved comes by writing the Lagrangian in the Hamiltonian viewpoint as

L =
m

2

(

dr

dt

)2

− V −
1

2m

(

p − m
dr

dt

)2

. (1.24)

The result of varying p in the stationary action principle is to produce

p = m
dr

dt
. (1.25)

But, if we accept this as the definition of p, the corresponding term in L disap-
pears and we explicitly regain the Lagrangian description. We are justified in
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completely omitting the last term on the right side of (1.24), despite its depen-
dence on the variables r and t, because of its quadratic structure. Its explicit
contribution to δL is

−
1

m

(

p − m
dr

dt

)

·
(

δp − m
d

dt
δr + m

dr

dt

dδt

dt

)

, (1.26)

and the equation supplied by the stationary action principle for p variations,
(1.25), also guarantees that there is no contribution here to the results of r and
t variations.

1.3 A Third Viewpoint

Here we take r, p, and the velocity, v, as independent variables, so that the
Lagrangian is written in the form

L = p·
(

dr

dt
− v

)

+
1

2
mv2 − V (r, t) ≡ p·

dr

dt
− H(r,p,v, t), (1.27)

where

H(r,p,v, t) = p·v −
1

2
mv2 + V (r, t). (1.28)

The variation of the action is now

δW12 = δ

∫

1

2

[p·dr − H dt]

=

∫

1

2

dt

[

δp·
dr

dt
+ p·

d

dt
δr − δr·

∂H

∂r
− δp·

∂H

∂p
− δv·

∂H

∂v

− δt
∂H

∂t
− H

dδt

dt

]

=

∫

1

2

dt

[

d

dt
(p·δr − Hδt) − δr·

(

dp

dt
+

∂H

∂r

)

+ δp·
(

dr

dt
−

∂H

∂p

)

− δv·
∂H

∂v
+ δt

(

dH

dt
−

∂H

∂t

)]

, (1.29)

so that the action principle implies

dp

dt
= −

∂H

∂r
= −∇V, (1.30)

dr

dt
=

∂H

∂p
= v, (1.31)

0 = −
∂H

∂v
= −p + mv, (1.32)

dH

dt
=

∂H

∂t
, (1.33)

G = p·δr − Hδt. (1.34)
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Notice that there is no equation of motion for v since dv/dt does not occur in
the Lagrangian, nor is it multiplied by a time derivative. Consequently, (1.32)
refers to a single time and is an equation of constraint.

From this third approach, we have the option of returning to either of the
other two viewpoints by imposing an appropriate restriction. Thus, if we write
(1.28) as

H(r,p,v, t) =
p2

2m
+ V (r, t) −

1

2m
(p − mv)2, (1.35)

and we adopt

v =
1

m
p (1.36)

as the definition of v, we recover the Hamiltonian description, (1.16) and (1.17).
Alternatively, we can present the Lagrangian (1.27) as

L =
m

2

(

dr

dt

)2

− V + (p − mv)·
(

dr

dt
− v

)

−
m

2

(

dr

dt
− v

)2

. (1.37)

Then, if we adopt the following as definitions,

v =
dr

dt
, p = mv, (1.38)

the resultant form of L is that of the Lagrangian viewpoint, (1.4). It might
seem that only the definition v = dr/dt, inserted in (1.37), suffices to regain the
Lagrangian description. But then the next to last term in (1.37) would give the
following additional contribution to δL, associated with the variation δr:

(p − mv)·
d

dt
δr. (1.39)

The advantage of adopting this third approach, which is characterized by
the introduction of additional variables, is particularly conspicuous in the action
formulation of electrodynamics, where variables, similar to v, appear for which
there are no equations of motion.

1.4 Invariance and Conservation Laws

There is more content to the principle of stationary action than equations of
motion. Suppose one considers a variation such that

δW12 = 0, (1.40)

independently of the choice of initial and final times. We say that the action,
which is left unchanged, is invariant under this alteration of path. Then the
stationary action principle (1.3) asserts that

δW12 = G1 − G2 = 0, (1.41)
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or, there is a quantity G(t) that has the same value for any choice of time t; it
is conserved in time. A differential statement of that is

d

dt
G(t) = 0. (1.42)

The G functions, which are usually referred to as generators, express the inter-
relation between conservation laws and invariances of the system.

Invariance implies conservation, and vice versa. A more precise statement is
the following:

If there is a conservation law, the action is stationary under an in-
finitesimal transformation in an appropriate variable.

The converse of this statement is also true.

If the action W is invariant under an infinitesimal transformation
(that is, δW = 0), then there is a corresponding conservation law.

This is the celebrated theorem proved by Amalie Emmy Noether (1882–1935).
Here are some examples. Suppose the Hamiltonian of (1.16) does not depend

explicitly on time, or

W12 =

∫

1

2

[p·dr − H(r,p)dt]. (1.43)

Then the variation (which as a rigid displacement in time, amounts to a shift
in the time origin)

δt = constant (1.44)

will give δW12 = 0 [see the first line of (1.19), with δr = 0, δp = 0, dδt/dt = 0,
∂H/∂t = 0]. The conclusion is that G in (1.23), which here is just

Gt = −Hδt, (1.45)

is a conserved quantity, or that

dH

dt
= 0. (1.46)

This inference, that the Hamiltonian—the energy—is conserved, if there is no
explicit time dependence in H, is already present in (1.22). But now a more
general principle is at work.

Next, consider an infinitesimal, rigid rotation, one that maintains the lengths
and scalar products of all vectors. Written explicitly for the position vector r,
it is

δr = δω×r, (1.47)

where the constant vector δω gives the direction and magnitude of the rotation
(see Fig. 1.2). Now specialize (1.17) to
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Figure 1.2: δω×r is perpendicular to δω and r, and represents an infinitesimal
rotation of r about the δω axis.

H =
p2

2m
+ V (r), (1.48)

where r = |r|, a rotationally invariant structure. Then

W12 =

∫

1

2

[p·dr − H dt] (1.49)

is also invariant under the rigid rotation, implying the conservation of

Gδω = p·δr = δω ·r×p. (1.50)

This is the conservation of angular momentum,

L = r×p,
d

dt
L = 0. (1.51)

Of course, this is also contained within the equation of motion,

d

dt
L = −r×∇V = −r×r̂

∂V

∂r
= 0, (1.52)

since V depends only on |r|.
Conservation of linear momentum appears analogously when there is invari-

ance under a rigid translation. For a single particle, (1.21) tells us immediately
that p is conserved if V is a constant, say zero. Then, indeed, the action

W12 =

∫

1

2

[

p·dr −
p2

2m
dt

]

(1.53)

is invariant under the displacement

δr = δǫ = constant, (1.54)

and
Gδǫ = p·δǫ (1.55)
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is conserved. But the general principle acts just as easily for, say, a system of
two particles, a and b, with Hamiltonian

H =
p2

a

2ma

+
p2

b

2mb

+ V (ra − rb). (1.56)

This Hamiltonian and the associated action

W12 =

∫

1

2

[pa ·dra + pb ·drb − H dt] (1.57)

are invariant under the rigid translation

δra = δrb = δǫ, (1.58)

with the implication that

Gδǫ = pa ·δra + pb ·δrb = (pa + pb)·δǫ (1.59)

is conserved. This is the conservation of the total linear momentum,

P = pa + pb,
d

dt
P = 0. (1.60)

Something a bit more general appears when we consider a rigid translation
that grows linearly in time:

δra = δrb = δv t, (1.61)

using the example of two particles. This gives each particle the common addi-
tional velocity δv, and therefore must also change their momenta,

δpa = maδv, δpb = mbδv. (1.62)

The response of the action (1.57) to this variation is

δW12 =

∫

1

2

[(pa + pb)·δv dt + δv·(madra + mbdrb) − (pa + pb)·δv dt]

=

∫

1

2

d[(mara + mbrb)·δv]. (1.63)

The action is not invariant; its variation has end-point contributions. But there
is still a conservation law, not of G = P·δvt, but of N·δv, where

N = Pt − (mara + mbrb). (1.64)

Written in terms of the center-of-mass position vector

R =
mara + mbrb

M
, M = ma + mb, (1.65)
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the statement of conservation of

N = Pt − MR, (1.66)

namely

0 =
dN

dt
= P − M

dR

dt
, (1.67)

is the familiar fact that the center of mass of an isolated system moves at the
constant velocity given by the ratio of the total momentum to the total mass of
that system.

1.5 Nonconservation Laws. The Virial Theorem

The action principle also supplies useful nonconservation laws. Consider, for
constant δλ,

δr = δλr, δp = −δλp, (1.68)

which leaves p·dr invariant,

δ(p·dr) = (−δλp)·dr + p·(δλdr) = 0. (1.69)

But the response of the Hamiltonian

H = T (p) + V (r), T (p) =
p2

2m
, (1.70)

is given by the noninvariant form

δH = δλ(−2T + r·∇V ). (1.71)

Therefore we have, for an arbitrary time interval, for the variation of the action
(1.18),

δW12 =

∫

1

2

dt[δλ(2T − r·∇V )] = G1 − G2 =

∫

1

2

dt
d

dt
(p·δλr) (1.72)

or, the theorem
d

dt
r·p = 2T − r·∇V. (1.73)

This is an example of the mechanical virial theorem.
For the particular situation of the Coulomb potential between charges, V =

constant/r, where

r·∇V = r
d

dr
V = −V, (1.74)

the virial theorem asserts that

d

dt
(r·p) = 2T + V. (1.75)
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We apply this to a bound system produced by a force of attraction. On taking
the time average of (1.75) the time derivative term disappears. That is because,
over an arbitrarily long time interval τ = t1 − t2, the value of r·p(t1) can differ
by only a finite amount from r·p(t2), and

d

dt
(r·p) =

1

τ

∫ t1

t2

dt
d

dt
r·p =

r·p(t1) − r·p(t2)

τ
→ 0, (1.76)

as τ → ∞. The conclusion,
2T = −V , (1.77)

is familiar for circular motion.
Here is one more example of a nonconservation law: Consider the variations

δr = δλ
r

r
,

δp = −δλ
(p

r
−

rp·r
r3

)

= δλ
r×(r×p)

r3
. (1.78)

Again p·dr is invariant:

δ(p·dr) = −δλ
(p

r
−

rp·r
r3

)

·dr + p·
(

δλ
dr

r
− δλr

r·dr
r3

)

= 0, (1.79)

and the change of the Hamiltonian (1.70) is now

δH = δλ

[

−
L2

mr3
+

r

r ·∇V

]

. (1.80)

The resulting theorem, for V = V (r), is

d

dt

(r

r ·p
)

=
L2

mr3
−

dV

dr
, (1.81)

which, when applied to the Coulomb potential, gives the bound-state time av-
erage relation

L2

m

(

1

r3

)

= −

(

V

r

)

. (1.82)

This relation is significant in hydrogen fine-structure calculations.

1.6 Appendix: Relativistic Lagrangian for a sin-

gle particle

Consider a single particle of rest mass m0 moving in a potential V (r, t). The
Lagrangian is

L = −m0c
2

√

1 −
ṙ2

c2
− V (r, t). (1.83)
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Note when |v| = |ṙ| ≪ 1, the first term in the Lagrangian is −m0c
2 + 1

2
m0v

2,
which, up to an irrelevant constant, gives the Lagrangian (1.4). Under a varia-
tion of the path, r → r + δr, and a variation of the time coordinate, t → t + δt,
the action changes by

δW12 =

∫ t1

t2

dt

[

δr ·
∂L

∂r
+

d

dt
δr ·

∂L

∂ṙ
+ δt

∂L

∂t
+

dδt

dt
L −

dδt

dt

∂L

∂ṙ
· ṙ

]

, (1.84)

since under a time variation,

δtṙ = ṙ

(

−
dδt

dt

)

. (1.85)

Here the momentum is

p =
∂L

∂ṙ
=

m0ṙ
√

1 − ṙ2/c2
. (1.86)

Upon integration by parts, we obtain

δW12 =

∫ t1

t2

dt

{

d

dt
[δr · p − δtE] + δr ·

[

−
d

dt
p +

∂L

∂r

]

+ δt

[

dE

dt
−

∂V

∂t

]}

.

(1.87)
Here the relativistic energy appears,

E = p · ṙ − L =
m0c

2

√

1 − (ṙ)2/c2
+ V, (1.88)

where we see the appearance of the relativistic mass energy, E = mc2,

m =
m0

√

1 − v2/c2
. (1.89)

From the variational principle, we see that the generators are

G = p · δr − Eδt, (1.90)

and the equation of motion is, in terms of the relativistic momentum (1.86),

d

dt
p = −

∂

∂r
V, (1.91)

while the energy is not conserved if the potential depends explicitly upon time:

d

dt
E =

∂

∂t
V. (1.92)

1.7 Problems for Chapter 1

1. Suppose the system consists of N particles interacting through a pairwise
potential V (ra−rb). Write down the Lagrangian and obtain the equations
of motion. What is the Hamiltonian, H(ra,pa)? Show that energy and
total momentum are conserved. What is required for angular momentum
to be conserved?
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2. For a free relativistic particle of rest mass m0, the energy is

E =
√

p2c2 + m2

0
c4.

Use this as the Hamiltonian H, and from the Lagrangian

L = p·
dr

dt
− H

determine the relationship between the velocity v = dr/dt and the momen-
tum. Compute the energy in terms of the velocity. Write the Lagrangian
in terms of v.

3. Consider a particle bound by a potential of the form

V = arb.

Derive the time-averaged virial theorem relating T to V . What is the
smallest value of b for which a bound state can occur?


