
Chapter 13

Translations and Rotations

We now make explicit reference to the arena of space and time. A coordinate
system is an idealization of an experimental apparatus. We isolate what is
significant for the physical system, not just a specific property of the apparatus.

There are a number of transformations we can make on a coordinate system

• We can translate the coordinate system (spatial displacement).

• We can rotate the coordinate system.

• We can go to a coordinate moving with constant relative velocity (a
“boost” or Galilean transformation).

• We can displace the origin of time.

Under translations, rotations, etc., the physics is not altered. We have a great
freedom in choosing our coordinate system—different coordinate systems give
different, but equivalent, descriptions.

We saw, in quantum mechanics, the freedom to make unitary transforma-
tions, which preserve algebraic properties and numbers. Intrinsic relations are
independent of the coordinate system; in quantum mechanics, unitary transfor-
mations preserve intrinsic relations.

What’s a unitary operator got to do with a physical property? Recall that
under a unitary transformation, states and operators change like this:

X̄ = U−1XU, 〈 | = 〈 |U, | 〉 = U−1| 〉. (13.1)

A physical property is represented by a Hermitian operator, H = H†. Recall
that a unitary operator can be written as

U = eiH , U † = e−iH = U−1, U †U = 1. (13.2)

Any unitary operator can be written this way. We’ll see this, by considering
small changes. For example, differential equations are simple, whereas finite
changes can be complicated.
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Under a small change (of a coordinate system, say), the unitary operator
differs just a little bit from the unit operator. For no change, U = 1. For a
small change

U = 1 + iG, (13.3)

where G, called the generator, contains a small parameter. The i is present to
make the result simpler. What restrictions are there on G so that U is unitary?
Given the above form for U , its adjoint is

U † = 1 − iG†, (13.4)

and when we insist

1 = U †U = (1 − iG†)(1 + iG) = 1 + i(G − G†) + G†G, (13.5)

where the last quantity is second order in the implicity small parameter, so
negligible. Thus we conclude

G = G†, (13.6)

or G is Hermitian. Indeed, if we start from

eiH = 1 + iH +
(iH)2

3
+ . . . ≈ 1 + iH, (13.7)

if H is small.
We will now get physical properties from coordinate system changes:

• Displacements correspond to momentum.

• Rotations correspond to angular momentum.

• Time displacements correspond to energy.

For these fundamental physical properties, we will borrow only names from
classical physics.

How do we build up unitary transformations? If U1, U2 are unitary, so is
U1U2:

(U1U2)
†U1U2 = U †

2U †
1U1U2 = U †

2U2 = 1. (13.8)

For infinitesimal transformations,

U1U2 = (1 + iG2)(1 + iG2) = 1 + i(G2 + G2), (13.9)

if −G1G2 is neglected, as small. The product of two infinitesimal transforma-
tions is an infinitesimal transformation. The generator of the product is the
sum of the generators.

What about dimensions? G is obviously dimensionless. However, when G is
identified in terms of physical properties,

G(atomic units) =
1

h̄
G(conventional units), (13.10)

where h̄ = h/(2π), the “quantum of action,” having units of momentum times
distance or energy times time, is a conversion factor to convert from conventional
units to atomic units. We will use both sets of units.
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Figure 13.1: A point in space as described in two different coordinate systems,
O and Ō, where the latter’s origin is displaced from the former’s by an amount
δǫ.

13.1 Spatial translations

Consider a displacement of the origin of the coordinate system, first by an
amount δǫ along the x axis. A point in the two coordinate system is represented
by (x, y), and (x̄, ȳ), respectively, where

x̄ = x − δǫ, ȳ = y. (13.11)

More generally, if the displacement of the origin is by an infinitesimal vector
δǫ = (δǫx, δǫy, δǫz), as shown in Fig. 13.1

x̄ = x − δǫx, ȳ = y − δǫy, z̄ = z − δǫz, (13.12a)

or r̄ = r − δǫ, (13.12b)

expressing the new position vector in terms of the old position vector, and
the vector displacement of the origin. If we have a transformation which is
parametrized by δǫx, the corresponding unitary operator is

U = 1 + iG, Gδǫx
= δǫxPx. (13.13)

We call Px is the x-component of linear momentum. Likewise, if the origin was
displaced along y,

Gδǫy
= δǫyPy , (13.14)

or along the z axis,

Gδǫz
= δǫzPz, (13.15)

So for a general infinitesimal displacement of the origin,

Gδǫ = δǫxPx + δǫyPy + δǫzPz = δǫ ·P. (13.16)

Since the displacement δǫ is real, the momentum P is Hermitian.
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Figure 13.2: A point in space as described in two different coordinate systems,
O and Ō, where the two coordinate systems differ by a rotation through an
angle δφ about the z axis.

13.2 Rotations

We will have much more to say about translations, but let us turn to rotations.
Figure 13.2 shows a rotation of the coordinate system in the x-y plane. New
coordinates are obtained from old coordinates as follows:

x̄ = x cosφ + y sin φ, ȳ = −x sin φ + y cosφ, (13.17)

which preserves the length of the position vector:

x̄2 + ȳ2 = x2 + y2. (13.18)

Let’s now consider an infinitesimal rotation,

φ → δφ, sin φ → δφ, cosφ → 1. (13.19)

Then the above rotation becomes

x̄ = x + yδφ, ȳ = y − xδφ, z̄ = z. (13.20)

You can see this directly without using sines and cosines.
The above is a rotation about the z axis. Introduce the infinitesimal vector

δω = (0, 0, δφ), (13.21)

where δω specifies both the direction of the rotation, and the magnitude of the
rotation. Note that

δω × r = (−δφ y, δφ x, 0). (13.22)

So the above is unified as
r̄ = r − δω × r. (13.23)

This is valid no matter what direction the axis of rotation has.
Unitary transformations are made up of corresponding infinitesimal genera-

tors, that is, we add up the z, x, and y components of the rotations:

Gδω = δωxJx + δωyJy + δωzJz = δω · J. (13.24)
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J is a Hermitian operator having the dimensions of action. Existence of these
operators is dictated by quantum mechanics; classical mechanics supplies the
name only: J is called the angular momentum operator.

Rotations are simpler than translations because we can make more general
statements about them.

Any vector transforms under a rotation like the coordinate (position) vector.
How do operators, like P, change under an infinitesimal transformation? Recall

X̄ = U−1XU (13.25)

preserves all algebraic relations, if we transform all operators the same way:

X + Y = Y → X̄ + Ȳ = Z̄, (13.26a)

XY = Z → X̄Ȳ = Z̄, (13.26b)

etc. The two descriptions, barred and unbarred, are equivalent. For infinitesimal
transformations, in conventional units,

U = 1 +
i

h̄
G, U † = U−1 = 1 −

i

h̄
G, (13.27)

so

X̄ =

(

1 −
i

h̄
G

)

X

(

1 +
i

h̄
G

)

= X +
i

h̄
[X, G], (13.28)

neglecting second-order infinitesimals. On the other hand, X only changes a
little bit,

X̄ = X − δX ; (13.29)

for example, under a displacement, we wrote r̄ = r − δǫ. So we conclude

δX =
1

ih̄
[X, G]. (13.30)

If we know what δX is (as we do for vectors), we learn about commutators, and
as we’ll see, compatibility of physical properties.

If X is Hermitian, so must be X̄. Consider 1

i
[X, Y ]; this is Hermitian if X

and Y are.:
(

1

i
[X, Y ]

)†

=

(

1

i
(XY − Y X)

)†

= −
1

i
(Y †X† − X†Y †)

=
1

i
[X†, Y †] =

1

i
[X, Y ], (13.31)

if X† = X , Y † = Y . Indeed, δX is Hermitian because X and G are both
Hermitian.

Now consider a scalar S and a vector V. How do these respond under a
rotation of the coordinate system?

S̄ = S, (13.32a)

V̄ = V − δω × V, (13.32b)
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the latter modeled on the response (13.23) of the position vector. If these are
expressed in the general form

X̄ = X − δX, (13.33)

we have
δS = 0, δV = δω × V. (13.34)

If these are operators, or physical quantities,

δS =
1

ih̄
[S, δω · J] = 0, (13.35a)

δV =
1

ih̄
[V, δω · J] = δω × V. (13.35b)

We therefore learn what commutators are. Since

δω · J = δωxJx + δωyJy + δωzJz, (13.36)

where the components δωx, δωy, δωz are arbitrary, we have for a scalar S

[S, Jx] = 0, [S, Jy] = 0, [S, Jz ] = 0, (13.37)

or
[S,J] = 0. (13.38)

For example, J
2 is a scalar, so we conclude

[J2,J] = 0. (13.39)

We have taken this for granted. For example, this says

[J2, Jz] = 0, (13.40)

which says that J
2 and Jz are compatible physical properties. That is, we can

measure the magnitude, and the z component of J simultaneously. So we can
talk about J = 1/2, a spin-1/2 atom, and Jz = 1/2, simultaneously.

For a vector, from Eq. (13.35b),

1

ih̄
[V, δω · J] = δω × V. (13.41)

Suppose we consider a rotation about the z axis, δω = ẑδωz. Then the x-
component of Eq. (13.41) is

1

ih̄
[Vx, Jz ]δωz = −δωzVy, (13.42a)

and the y component is

1

ih̄
[Vy , Jz]δωz = δωzVx, (13.42b)
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while the z component vanishes,

1

ih̄
[Vz , Jz]δωz = 0. (13.42c)

This last says that a rotation about the z axis does not change the z component,
which just repeats what we did before for x̄ and ȳ. Thus we have the following
commutation relations for the components of a vector:

[Vz , Jz] = 0, (13.43a)

1

ih̄
[Vy, Jz] = Vx, (13.43b)

1

ih̄
[Vx, Jz] = −Vy, (13.43c)

which says that parallel components commute, and perpendicular components
have a positive sign when the components are in cyclic order. Thus, we antici-
pate

1

ih̄
[Vx, Jy] = Vz , (13.44)

which is obtained directly by considering a rotation about the y axis.
As an application of this general rule for vectors, consider V = J. Then we

must have
1

ih̄
[Jx, Jy] = Jz, (13.45)

and so on by cyclic permutations. This can either be thought of as a rotation
about the y axis, which mixes x and z components together, or as a rotation
about the x axis, which mixes y and z components together. The cyclic permu-
tations of this statement are

1

ih̄
[Jy, Jz ] = Jx,

1

ih̄
[Jz , Jx] = Jy. (13.46)

There is nothing sacred about the axes x, y, z; they are just a set of perpen-
dicular directions, with a certain (right-handed) sense. In these formulas, J has
two roles, 1) as a generator, and 2) as a vector. Another way of writing this
result is obtained by noting

JxJy − JyJx = (J × J)z , (13.47)

so we can write the three angular momentum commutation relations as the
single vector relation

1

ih̄
J × J = J. (13.48)

We met this long ago, for spin-1/2, where

J =
h̄

2
σ, (13.49)
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so Eq. (13.48) becomes
1

2
σ ×

1

2
σ = i

1

2
σ. (13.50)

We had also seen the same for spin-1.
Although J

2 and Jz commute and are therefore compatible, is Jx also com-
patible with these two? No, because

[Jx, Jz] 6= 0. (13.51)

What can we say about the states in which J
2, Jz have definite values?

These are simultaneous eigenstates of these two operators, call them |jm〉, which
satisfy the eigenvalue equations

J
2|jm〉 = J

2′|jm〉, (13.52a)

Jz|jm〉 = J ′
z|jm〉, (13.52b)

where let us write
J

2′ = h̄2j(j + 1), J ′
z = h̄m, (13.53)

where at this point m and j(j + 1) are unknown numbers. (We can always
choose j ≥ 0.) The units of angular momentum, those of action, are taken care
of by the appearance of h̄. Now use the operator properties

1

ih̄
[Jx, Jz ] = −Jy, (13.54a)

1

ih̄
[Jy, Jz ] = Jx. (13.54b)

This represents a rotation in the x-y plane. It is useful to introduce non-
Hermitian quantities

Jx + iJy = J+, Jx − iJy = J−, (13.55)

which are adjoints of each other,

J†
+ = J−, J†

− = J+. (13.56)

Now
1

ih̄
[J±, Jz ] = −Jy ± iJx = ±i(Jx ± iJy) = ±iJ±, (13.57)

or
[J+, Jz ] = −h̄J+, [J−, Jz] = h̄J−, (13.58)

which are adjoints of each other. When we write out the commutator explicitly,
we have

JzJ+ = J+(Jz + h̄), JzJ− = J−(Jz − h̄). (13.59)

Take the first equation, and have it act on |jm〉,

JzJ+|jm〉 = J+(Jz + h̄)|jm〉 = h̄(m + 1)J+|jm〉, (13.60)
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which says that

J+|jm〉 = C|j, m + 1〉, (13.61)

where the constant is present because J+|jm〉 is not a unit vector. (Because of
Eq. (13.39) J+ does not change the value of J2.) This equation gives the changes
in the values of Jz in units of h̄. To determine C, multiply this equation by its
adjoint

〈jm|J− = C∗〈jm + 1|, (13.62)

so since |jm + 1〉 is a unit vector,

〈jm|J−J+|jm〉 = |C|2. (13.63)

This equation says |C|2 is a diagonal matrix element of J−J+, or the expectation
value of J−J+. Now

J∓J± = (Jx ∓ iJy)(Jx ± iJy) = J2
x + J2

y ± i[Jx, Jy] = J
2 − J2

z ∓ h̄Jz , (13.64)

so we conclude

[J+, J−] = 2h̄Jz, (13.65)

which may directly confirmed:

[Jx + iJy, Jx − iJy] = i[Jy, Jx] − i[Jx, Jy] = 2h̄Jz. (13.66)

Thus, we see that J−J+ has a definite value in the state |jm〉,

J−J+|jm〉 = h̄2[j(j + 1) − m2 − m]|jm〉. (13.67)

In particular,

〈jm|J−J+|jm〉 = h̄2[j(j + 1) − m(m + 1)] = h̄2(j − m)(j + m + 1), (13.68)

or

|C|2 = h̄2(j − m)(j + m + 1). (13.69)

This must be positive, so we must have m ≤ j. And, necessarily j ≥ 0.
It is time to give these eigenvalues names: we call j the angular momentum

quantum number, and m the magnetic quantum number, which makes reference
to the Stern-Gerlach experiment. The above inequality roughly says that the
component of a vector cannot exceed the length of the vector. Since J+ has the
effect of increasing the value of m by one unit, but j − m cannot be negative,
we conclude there must be a state with m = mmax, the maximum value of m:

J+|jmmax〉 = 0, (13.70)

which says there is no state with m = mmax + 1. Now, the expression for |C|2

tells us that

mmax = j. (13.71)
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Let us choose the phase so that

1

h̄
J+|jm〉 =

√

(j − m)(j + m + 1)|jm + 1〉. (13.72)

We can also go down, using J−:

JzJ− = J−(Jz − h̄), J
2J− = J−J

2. (13.73)

When these act on |jm〉,

Jz(J−|jm〉) = (m − 1)h̄(J−|jm〉), (13.74a)

J
2(J−|jm〉) = j(j + 1)h̄2(J−|jm〉), (13.74b)

so we conclude
J−|jm〉 = D|jm − 1〉. (13.75)

The adjoint of this equation is

〈jm|J+ = D∗〈jm − 1|. (13.76)

Putting these two statements together, we see from Eq. (13.64),

〈jm|J+J−|jm〉 = |D|2 = h̄2[j(j +1)−m2+m] = h̄2(j +m)(j−m+1), (13.77)

which is Eq. (13.69) with m → −m. Since this cannot be negative, we conclude
that m ≥ −j, and that there must be a minimum value of m, mmin such that

J−|jmmin〉 = 0, (13.78)

and that mmin = −j.
Choosing the phases in the simplest possible way,

1

h̄
J−|jm〉 =

√

(j + m)(j − m + 1)|jm − 1〉. (13.79)

Equations (13.79), (13.72) together with

1

h̄
Jz|jm〉 = m|jm〉, (13.80a)

1

h̄2
J

2|jm〉 = j(j + 1)|jm〉, (13.80b)

give the effect of Jx, Jy, Jz , and J
2 on the state |jm〉.

For a given j, mmin = −j, mmax = +j. But mmin and mmax must differ
by an integer, because repeated applications of J+ must carry m from mmin to
mmax. Let the number of steps from mmin to mmax be n. Here are the first few
examples:

• n = 0: j = 0, m = 0 (spin zero);
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• n = 1: j = −j + 1 which implies j = 1/2, m = 1/2 or −1/2 (spin 1/2);

• n = 2: j = −j + 2, which implies j = 1, m = 1, 0,−1 (spin 1).

In general,

j = −j + n, 2j = n, j =
n

2
, n = 0, 1, 2, 3, . . . . (13.81)

So the angular momentum quantum number takes the values 0, 1/2, 1, 3/2, 2,
etc. The magnetic quantum number m tales on the 2j + 1 values from −j to j,
through integer steps.

Let’s finish this chapter by reminding you of spin 1/2. When j = 1/2,
m = ±1/2, and we defined

1

h̄
J =

1

2
σ, (13.82)

where the eigenvalues of σz are

σ′
z = ±1. (13.83)

This property is true for the eigenvalues of σx, σy as well, so

σ2
x = σ2

y = σ2
z = 1. (13.84)

which also follows from the eigenvalue

1

h̄
J

2′ = j(j + 1) ⇒ σ
2 = 3. (13.85)

The J+, J− statements translate into

1

2
(σx + iσy)|+〉 = 0, (13.86a)

1

2
(σx + iσy)|−〉 = |+〉, (13.86b)

1

2
(σx − iσy)|+〉 = |−〉, (13.86c)

1

2
(σx − iσy)|−〉 = 0. (13.86d)

We express the coefficients appearing here as a matrix,

〈±|
1

2
(σx + iσy)|±〉 =

(

0 1
0 0

)

, (13.87a)

〈±|
1

2
(σx − iσy)|±〉 =

(

0 0
1 0

)

, (13.87b)

which are the adjoints (transposed, complex conjugates) of each other. If we
add and subtract these, we get the familiar Pauli matrices,

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

. (13.88)


