NO Reading assignment

H.w Due today 60p 6 on DZL

Exam 2 Monday 7:30 A.M-9:20 A.M

Clip 4-5 anly

16 Questions I free

Exact same former as exam 1

DST Sunday
Spring forward & clocks I hour
adead

Interactive Question

sets it back down. The work that the weightlifter does on the bar is: A weightlifter lifts a heavy weight over his head and then

- A) Greater than 0 since he applies a force in the direction of the displacement
- B) Equals 0 since the change in Kinetic Energy = 0
- C) Equals 0 since he does not apply any force while lifting the bar
- D) Less than 0 since the force he applies is opposite in direction to the displacement
- Equals 0 since the work he does in lifting the bar up is equal and opposite to the work he does setting it down

WE found a relationship between work and kinetic Energy

Where OK

2 forms of energy, Kinetic and potential

TRelationship between work and potential energy

Gravity

Suppose I raise a ball to a
height h= yf-yi h sign
How much work has been
end by me on the ball?

W= Facos B

WmE = mgh = mg(yf-yi)

AK=O so net work = O

only me and gravity are doing work on the ball and net work = 0 so work done by gravity must be equal and opposite to work I have done.

Define Du= 41-41

WL=-DU

ex) A roller coaster car slides down a friction less track

what is the change in potential energy of the car if it has a mass of 100 kg?

$$u_{A} = m_{Q} \cdot 60m = 58,8005$$
 $u_{B} = m_{Q} \cdot 0 = 05$
 $u_{A} - u_{D} = 58,8005$

distance stretchap K=sbpe Spring constant Area under curve = F. L = work Area of triangle = = 64 work = EKX potential energy

Gravity

work done in a gravitational field does not depend on path taken.

=> Gravitational potential energy
15 always the same at the same
height regardless of path taken

1f work done is independent of path taken -> conservative force

Spring, gravity > conservative
Friction > not conservative

Whet = DK = We + Whe We found earlier We = - Du Lgravity)

DK = - DU + WNC WNC = DK + DU

forces whe = 0

=> \Dk + \Du = O

テいな・イナー(テいに+イに)=の

Total Energy = kinetic + potential

Ef = ks + us

Ei = ki + ui

 $E_f - E_i = 0 \Rightarrow E_f = E_i$

Energy 15 conserved (mechanical)

Potential Energy

Potential of an object to do work

-> spring

-> bravity

For Gravity

No absolute scale for potential energy. Something that 1s higher has a higher potential energy than some thing that 1s lower

Interactive Question

Two marbles, one twice as heavy as the other, are dropped hitting the ground, the heavier marble has to the ground from the roof of a building. Just before

- A) as much kinetic energy as the lighter one.
- B) twice as much kinetic energy as the lighter one
- C) half as much kinetic energy as the lighter one.
- D) four times as much kinetic energy as the lighter one. E) impossible to tell.

Interactive Question

In which system is there a decrease in potential energy?

- A) A boy stretches a spring.
- B) A child slides down a sliding board.
- C) A crate rests at the bottom of an inclined plane.
-) A car ascends up a steep hill.
- E) More than one of the above