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1 Basic Thermo

Definitions:

• Adiabatic: No heat is exchanged in or out of system. dQ = 0

• Quasi-static: Uniform pressure throughout system

• Isoentropic: Adiabatic, quasi-static, and constant entropy

• Reversible: constant entropy

Equations:

• Most all basic thermo relations can be derived from these two equations/derivations:

F = E − TS → dF = dE − TdS − SdT (1)

dU = TdS − PdV + ΣµdN (2)

• Internal energy:
∆U = Q−W (3)

• Work done by the system is calculated as:

W =

∫
PdV (4)

• Relationship between pressure, force and area:

P =
F

A
(5)

• Ideal Gases:

– Ideal gas law equation: PV = NkT = nRT . N = # of particles, n = # of moles of particles

– Energy of an ideal gas = N
2 kT , where N represents degrees of freedom.

Energy of a monatomic ideal gas = 3
2NkT

Energy of a diatomic ideal gas = 5
2NkT

• Clausius-Clapeyron Equation:
dP

dT
=

L

T (VG − VL)
(6)

• We can also see from the free energy equation that we can relate the pressure derivative to the entropy
at equilibrium:

dP

dT
=
SG − SL
VG − VL

(7)

• Enthalpy:
H = E − pV (8)
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1.1 Extensivity

A thermo property such as entropy is properly extensive if: S(λN, λE, λV ) = λS. Equations of state can
be given as intensive instead. That means they are given as a per-particle measurement - such as:

e =
E

N
v =

V

N
s =

S

N
(9)

All the same derivative relations still hold for these intensive properties.

1.2 Basic Temperature & Entropy Relationships

• Heat to raise/lower temp: Q = Cpm
∫
dT

• Heat to melt ice: Q = mL

• ∆S = Q
T ; plug in Q and then integrate (the integral in definition of Q)

• Cv and Cp for a liquid are basically the same

• At high temperatures, we expect the macrostate of a system to be in its most random state. That
means that every microstate should have equal probability of occurring.

1.3 Maxwell Relations

Knowing the dU and dF equations listed previously, we can find additional physics by taking mixed partial
derivatives. Since partial derivatives can switch order without changing the result, doing so can lead to
additional physics relationships. For example:

∂

∂E

∂S

∂V
=

∂

∂V

∂S

∂E
→ ∂

∂E

P

T
=

∂

∂V

1

T
→ P =

∂E

∂V
(10)

1.4 Engines

• Work done by an engine is positive if the area under the curve of a P-V diagram is positive.

• A Carnot cycle consists of two isotherms and two adiabats.

• An adiabat line goes from a lower isotherm to a higher isotherm line (so an adiabat line is steeper
than an isotherm line).

• Adiabat: dQ = 0; and since dS = dQ
t , we find that dS = 0.

Also for an adiabat:
PV γ = constant & TV γ−1 = constant (11)

Where γ = f+2
f = CP

CV
and f represents the degrees of freedom (3 for monatomic ideal gas).

• Isotherm: dT = 0

• Isochore: dV = 0, and Q = Cvm∆T

Efficiency:

η =
benefit

cost
=
W

Qh
= 1− Qc

Qh
(12)

2 Classical Statistical Mechanics

Classical stat mech systems are usually distinguishable and energy levels can be either discrete or
continuous. Usually the question must give information about the particles’ energy levels and
distinguishability.

Given an average measurement per time n̄s, we find the variance as:

(∆ns)2 =< (ns− < ns >)2 >=< n2
s > −n̄2

s (13)
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2.1 Ensembles

2.1.1 Microcanonical Ensemble (E, N, V fixed)

Entropy:
S = k ln Ω (14)

Where Ω represents multiplicity, which is the number of possible states present.

Partition function is 1
Ω

Binomial distribution: (
N

n

)
=

N !

n!(N − n)!
(15)

If asked to calculate the multiplicity Ω or other derivations in the MCE for a more complicated system, such

as a classical harmonic oscillator (H = p2

2m + m
2 ω

2x2), remember that Ω represents the total number of states
present - so integrate with a step function in order to include all energies up to the given energy:

Ω =

[∫
d3xd3p

h3
Θ

(
E −

∑
i

(
p2
i

2m
+
m

2
ω2x2

))]N
(16)

We can write this as a 6-dimensional sphere of radius
√
E in phase space. (Probably won’t encounter it.)

2.1.2 Canonical Ensemble (N, V, T fixed)

The canonical ensemble represents a system in equilibrium with a reservoir.

Use this partition function for a single particle:

z =

∞∑
n=0

e−βn (17)

and for N particles (add an 1
N ! if indistinguishable):

Z = zN (18)

Along with the relations derived from the dF and dU equations, we also have:

E = − ∂

∂β
lnZ F = − 1

β
lnZ CV =

∂E

∂T
(19)

More CE details:

• If given energy in term of p or k (in CE or GCE), as long as it is not bosons or fermions, integrate over
all phase space to find the partition function. This means the partition function in 3D looks like:

z =
1

h3

∫
e−βE(x,p)d3xd3p (20)

Remember that if integrating over momentum space, p, divide by a factor of h for each dimension in
the integration. If integrating over k space instead, only divide by a factor of 2π for each dimension.

• If a system has multiple sources of energy, the partition function is the multiplicative combination of
each energy source. For example, for a system of indistinguishable particles with internal energy as
well as translational energy (if they are point particles):

Z = ZtransZinternal =
1

N !
(ztranszinternal)

N (21)

These z’s can be calculated independently. For example, if given point particles with two internal
energy states, 0 and ∆:

Z =
1

N !

[
e0 + e−β∆

]N [∫ d3xd3p

h3
e−βp

2/2m)

]N
(22)
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• Similarly, if we have a gas made up of two or more particles, the combined partition function is the
multiplicative combination of each kind of particle. For example, the partition function for a gas made
up of two particles, A and B, looks like:

Z = ZAZB (23)

• If two or more gases/liquids are in equilibrium in the same volume, their chemical potentials must be
equal.

• If asked for less traditional calculations (such as the average height of atoms in a gravitational field),
look at the partition function and see what derivative to take to bring that quantity down from the
exponent (and divide by any extraneous terms that would come down). For example, for the average
height of atoms in a gravitational field:

Z =
1

N !

(∫
d3xd3p

h3
e−β(p2/2m−mgz)

)N
(24)

〈z〉 = − 1

Nβm

∂

∂g
lnZ (25)

2.1.3 Grand Canonical Ensemble (V, T, µ fixed)

Along with the dU and dF equations, use the grand potential G to derive relations for the GCE:

G = F − µN = E − TS − µN = −pV = −kT lnQ = − 1

β
lnQ (26)

Use the grand partition function with this ensemble:

Q = ΣeβµNΣe−βEnN (27)

Another entity used in GCE is the grand canonical potential, ψ (is actually derivable from dG as ψ = PV
kT ):

ψ = lnQ (28)

As with CE, if given a composite substance (such as electrons and positrons), it’s easiest to write the partition
function as a product of the two partition functions:

Qtot = Q+Q− (29)

This also works if given an energy that varies based on spin, such as H = h̄2k2

2m +mzB, where mz = ±1:

Qtot = Q(mz = 1)×Q(mz = −1) (30)

3 Quantum Statistical Mechanics

Quantum statistical mechanics particles usually have discrete energy levels and are usually
indistinguishable, but in the case of bosons or fermions, we take care of indistinguishability when we
calculate the partition function according to distribution functions rather than just using the 1

N ! that we
used for classical particles.

Usually we use the Grand Canonical Ensemble to analyze quantum systems, but we can no longer sum
over N in the partition function (Z), since we need to sum over states rather than particles.

For example, for a Fermi gas with a particular defined energy:

Q =

∞∑
N=0

∑
{σ}

eβµNe−βEσ (31)
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We must convert our sum over N to a sum over states, so N =

∞∑
i=0

ni:

Q =

∞∑
ni=0

e

∑
i

niβ(µ−Ei)
=
∏
i

( ∞∑
ni=0

e−niβ(Ei−µ)

)
(32)

It’s easiest to calculate this for spin zero particles, in which case ni = 0, 1:

Q =
∏
i

(
1 + e−β(Ei−µ)

)
(33)

For nonzero spin, the ni should be multiplied by a factor of 2S + 1. So for example, for a particle with spin
5
2 , 2S + 1 = 6 and the grand partition function becomes:

Q =
∏
i

(
1 + e−β(Ei−µ)

)6

(34)

As a general rule, quantum effects should dominate at low temperatures; classical effects should dominate at
high temperatures.

3.1 Photons

Remember that N is not conserved for photons, and likewise, µ = 0.

3.2 Condensates

How to tell if we have a condensate:
Set µ = 0 and T = 0. If N →∞, no condensate. If N → 0 or N → a number, condensate.

Or, solve for µ, set T = 0 and see if we have any restrictions on N to make µ equal the ground state en-
ergy. No restrictions on N = no condensate. Essentially if you can even find µ by itself, there’s no condensate.

How to find critical temperature:
Set µ = 0 and solve for T as a function of N . This is the critical temperature.

3.3 Distribution Functions

We can use the probability distribution f(εi) for bosons and fermions to calculate various useful things. (We
can derive these distribution functions from the canonical ensemble, where Z has an added 1

N ! for bosons.)
In these formulas:

• The distribution function f(εi) represents the number of particles with energy εi. When called a
“probability function”, it does not include gs in the numerator; when used to calculate “population”,
it does. Be careful with wording and note which case you are assuming.

• Spin degeneracy gs represents the spin degeneracy of state i being calculated. This is 2S+ 1 except
in the case of massless particles, which have spin degeneracy 2S. If the energy εi depends on the spin,
this is just 1.

• εi represents an energy that the state can have.

• g(k) and g(ε) represent the density of states. These must be calculated depending on the energy and
dimensions of the question. The easiest way to do that is:

g(ε) =

∫ (
L

2π

)n
d~k δ(ε− εk) (35)

In this definition for density of states, d~k should be written according to the number of dimensions,
and εk is the reference energy relating ε and k (for example, εk = pc = h̄kc). Write d~k in terms of
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energy and the integral becomes trivial.

Remember this definition does not include spin degeneracy gs, which some people do include in
their definition of density of states.

The following calculations assume that gs is not included in the distribution function f(ε) or the density of
states g(ε).

Bosons:

f(ε) =
1

eβ(ε−µ) − 1
(36)

Fermions:

f(ε) =
1

eβ(ε−µ) + 1
(37)

Boltzmann Distribution:

f(ε) =
1

eβ(ε−µ)
(38)

The following are particularly helpful for quantum systems:

Average internal energy:

U =

∫
ε gs g(ε)f(ε)dε (39)

Number of particles:

N =

∫
gs g(ε)f(ε)dε (40)

Specific heat capacity:

C =
∂

∂T

∫
ε gs g(ε)f(ε)dε (41)

The average of any random quantity n, if we know that quantity in terms of ε, n(ε):

〈n〉 =

∫
n(ε) f(ε) g(ε) dε (42)

We can also find the average of a quantity by integrating over phase space:

〈ε〉 =

∫
εk f(k) g(k) d3kd3x (43)

At T = 0K, we can find a few more properties:

N =

εf∫
0

g(ε)dε (44)

µ = εf at T = 0K (45)
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4 Phase Transitions & Mean Field Theory

Magnetization:

M = −∂F
∂B

= µ0 (N+ −N−) (46)

Magnetic Susceptibility :

χ =
∂M

∂B
(47)

Evidence of Phase Transition:

• Divergence of E or M (or divergence of their derivatives)

• Multiple states for a fixed temperature (example, high and low density states simultaneously present)

To find the solution(s) of a transcendental equation, set the slope of each side equal to each other.

For example, when looking for spontaneous magnetization, remember that the slope of tanh(αx) at x = 0 is
α (or just take the derivative of the function to get the slope! evaluate result at M=0 for most linear case).
So, to find solutions for βx = tanh(αx), set the slopes equal: β = α in this case.

5 Helpful Maths

Taylor expansion:

F (x0 + dx) = F (x0) + dx
dF

dx
|x=x0 + dx2 d

2F

dx2
|x=x0 + ... (48)

Don’t forget the chain rule for derivatives:
dT

dz
=
∂T

∂P

∂P

∂z
(49)

Stirling’s approximation:
lnN ! = N lnN −N (50)

To take the derivative of a function that has multiple variables, such as S(T,N, V ):

dS(T,N, V ) =
∂S

∂T
dT +

∂S

∂N
dN +

∂S

∂V
dV (51)

We can think of this from taking the whole time derivative and “canceling out” the dt from each term:

d

dt
S(T,N, V ) =

∂S

∂T

dT

dt
+
∂S

∂N

dN

dt
+
∂S

∂V

dV

dt
(52)

Expansions for small x (useful for temperature limits!):

(1 + x)n ' 1 + nx (53)

ex ' 1 + x+ ... (54)

Helpful summation tricks
∞∑
N=0

aN =
1

1− a
a� 1 (55)

∞∑
N=0

1

N !
xN = ex (56)

Sometimes a partition function (grand partition functions especially) cannot be easily calculated. Then it
helps to look at the high and low temperature limits. For example:

Z ∼
∑

e−βEn
2

(57)
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For T →∞, β → 0, so exponent gets small. Integrate.

For T → 0, β →∞, so e−βE gets small. Sum, keeping only the first couple terms.

Remember this integral for help solving N in grand canonical ensemble problems:∫ ∞
0

xn−1

z−1ex − 1
= Γ(n)gn(z) (58)

Standard deviation:
∆n2 = 〈n2〉 − 〈n〉2 (59)

Gamma function:

Γ(n+ 1) = nΓ(n) Γ

(
1

2

)
=
√
π (60)
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