5. Consider the quantum mechanical linear rotator. It has energy levels

n J(J+1) WMne" fovotor. so astume N=1
21

where [ is the moment of inertia and J is the angular momentum quantum
number, J = 0,1,2,.... Fach energy level is (2J + 1)-fold degenerate.

by =

(a) In the low temperature limit (A*/2] > kT) determine approximate ex-
pressions for:
i. The rotation partition function. (2pts)
il. The internal energy. (1pt)
iii. The specific heat. (Ipt)
n the high temperature limi 21 <« determine approximate ex-
(b) In the high temperature limit (*/2] < kT) det pp t
pressions for:
i. The rotation partition function. (2pt)
1. The internal energy. (1pt)
1. The specific heat. (1pt)
(¢) How do the quantum results compare with the equipartition theorem for

a classical rotator with two transverse degrees of freedom? (2pts)
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6. Consider the “bogon,” a spin 5/2 fermion with the charge of an electron but
with a dispersion relationship
E = cp’.
where p = |p] Assume that your bogons are confined in a three dimensional

sample and are non-ineracting.

(a) Working in the grand canonical ensemble, determine the density, p =
(N)/V, as a function of the chemical potential, yu (or the fugacity, z = ¢#),
T, and V. (3pts)

(b) What is the bogonic Fermi energy (1 at T = 0) as a function of their
density? (3pts) (Hint: This should not involve any complicated integrals)

(¢) Derive a series expansion in z for the grand canonical free entropy, = =
EY. = log Z, where Z is the grand canonical partition function. (4pts)
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6. A black body may be thought of as a system of harmonic oscillators
possessing all possible frequencies—equivalently, it is a system of pho-
tons governed by the Bose-Einstein distribution.

(a) Calculate the average energy u(v) of a quantum harmonic oscil-
lator of frequency v at temperature 7' where the allowed energies

of the oscillator are:
E(n) = hvn
and we have ignored the zero-point energy. (3 points)

(b) The number of oscillators per unit phase space is 2dqd®p/h?,
where the factor of 2 comes from the two transverse polarization
states of the photon. Calculate the total energy of the black body

) Bgddp
U= 2/ /jls pu(z/)

in terms of a single dimensionless integral. This is the famous
Planck formula. [Use the relativistic relation between frequency
and momentum for photons, kv = pe.] (3 points)

(c) Derive the Stefan-Boltzmann law, v = T, and compute the
constant a using the formula

o0 x
/ da—
0 e*

where ((n) is the Riemann zeta function, and I'(n) is the gamma

func’uon . Your answer will be in terms of mathematical and

physical constants. (4 points)
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Problem 5 (10 Points):

Consider a one dimensional ideal gas of electrons as a model for the
conduction electrons in a one dimensional wire.

a. Determine the density of states g(E) for the one dimensional non-
interacting electron system confined to a length, L. (3 Points)

b. What is the Fermi energy for this system? (2 Points)

c. What is the root mean square velocity of the electrons at 7' = 0 °K?
(3 Points)

d. What is the entropy of the electrons at T = 0°K? Justify your
answer. (2 Points)
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Problem 6 (10 Points): \ = bowo

The following questions refer to a stream of photons in equilibrium
at temperature T (thermal light - say from a light bulb) incident on
a perfect detector which detects (counts) all the particles that hit it.
Your final answers should be in terms of the mean particle number.

a. Given 7, photons are counted on average in time t, calculate the

variance in the photon number n,, (Ang)?. (2 Points)

b. Calculate the fractional fluctuation of the detector signal defined as
the square root of the variance divided by the mean photon number,

7is, squared, \/(Ang)2/n2. This is the inverse of the signal to noise
ratio. (2 Points)

The following questions refer to a stream of electrons in equilibrium
at temperature T incident on a detector which detects (counts) all
the particles that hit it. Again, your final answers should be in terms
of the mean particle number.

¢. Given 7, electrons are counted on average in time t, calculate the

variance in the electron number n., (An.)?. (2 Points)

d. Calculate the fractional fluctuation of the detector signal defined as
the square root of the variance divided by the mean electron number,

fie, squared, 1/ (Ane)2/n2. (2 Points)

e. Compare the two results. Are the results the same or different? Do
the counts detected clump (bunch) or anti-clump (anti-bunch)? Why?
(2 Points)
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spin zero Bose gas in two dimensions.
ven by:

= K2k /2m

1. Assume your system is confined to
side.

for the grand canonical free energy
states. Do not evaluate the sum. (1

rticles in the system as a function of

N(T,V,u) in the limit 7 — 0. What

sibility of a Bose-Finstein transition

qual to the energy density, so that
t have to do any sums over states -

holds using analytic expressions for
stem). (3 pts.)
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5. Consider a gas of N non-interacting one dimensional diatomic
0) (orwedk Yo 0o\ Lodinales.  molecules enclosed in a box of “volume” L (actually, just a length)

at temperature T'.
KE= m\?.‘k * Y‘“P)

(a) The classical energy for a single molecule is:

? E; ’é_\LY\geP

E(p1, p2, 21, T2) — + 2— + = B (21 — 7’2)
H= PUM A 9503 ¥ ’\‘-(YSQP where p; and p, are the classical momenta of the atoms in one
L\m m diatomic molecule, 2y and z, are their classical positions, and K is
P“*Se.e the spring constant. Calculate the specific heat for the gas. (You
C n d? Xe_ o B 9h011]d assume that K [,2/2 >> kgT, where kg is Boltzmann’s
Consta.nt.) (4 points).

hms%éu (b) In the quantum limit the energy levels of the molecule are discrete.
In a semiclassical approach we can write the energy of one molecule

3t as:
%;&Ng Ll“/_“jf_z 3'1- N Bp B P2 5 1
g (Prn) = g Fheln+3)

where P is the momentum of the diatomic molecule (of mass 2m),

and w is the natural frequency of the oscillator, and n is a non-

(42 ¥ 16 \(\1 “\L ( negative integer (n > 0). Calculate the specific heat. (4 points).

6% ///:- c¢) Calculate the high and low temperature limits of your result in
g
(b), and explain how they relate to the result of (a). (2 points)
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6. Fermions:
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Show that for any non-interacting spin 1/2 fermionic system with
chemical potential x, the probability of occupying a single particle
state with energy p+ § is the same as finding a state vacant at an

energy 4 — . (2 points)

Coonsider non-interacting fermions that come in two types of en-

ergy states:
E:t(/:) = +v/m2ct + B?k2c?

At zero temperature all the states with negative energy (all states
with energy E_(;)) are occupied’ and all positive energy states
are empty, and that w(T = 0) = 0. Show that the result of part (a)
above means that the chemical potential must remain at zero for
all temperatures if particle number is to be conserved. (2 points)

Using the results of (a) and (b) above, show that the average
excitation energy, the change in the energy of the system from it s
energy at T = 0 in three dimensions is given by:

dk L
(2m)? Ey (k) 1 4 ePB+(F)

AE = B(T) - E(0) = 4V /

(2 points)

Evaluate the integral above for massless (m = 0) particles. (2
points)

Calculate the heat capacity of such particles. (2 points)
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1Technically this meank the total energy of the system diverges. If this bothers you,
you can assume some larg cut-off to the wavevectors, Akmaxc >> kT, which will have no

effect. on your final answerq.
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6. Consider a set (N >> 1) of spinless bosons confined in a harmonic
oscillator potential. The characteristic frequency of the harmonic po-
tential is wo, and fhiwy << kT, where T is the temperature and k is
Boltzmann’s constant.

(a) Assuming the system is one dimensional, so that the energy of the
system is given by E = hwg(n + 1/2), calculate N(T, V, 1), in the
above limit, where y is the chemical potential. (3 points)

(b) Show that there is no Bose-Einstein transition for this system in
1D. (1 points)

(c) Assuming the system is two dimensional, calculate N(T,V,pu),
again in the limit iwg << kT'. (3 points)

(d) Show that there is a Bose-Einstein transtion and calculate the
critical temperature as a function of the number of particles. (Do
not simply quote a result.) (3 points) '
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6. Consider a fictitious spin 5/2 fermion with the charge of an electron
but with a dispersion relationship

E = vgp.

where p = |p]. We will call this particle the “offon.” Assume that
your offons are confined in a three dimensional sample and are non-
ineracting. We will work in the Grand Canonical Ensemble.

(a) Determine the density, p = (N)/V, as a function of the chemical
potential u (or the fugacity, z = €#), T, and V. (3 points)

(b) What is the offonic Fermi energy (u at 7' =0) as a function of
their density? (Hini: This should not involve any complicated
integrals). (3 points)

(¢} Derive a series expansion in z for the grand canonical free en-

tropy, = = % = log Z. where Z is the grand canonical partition

function. (4 points)
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Problem 5 (10 Points):

Dee Schavedar 2904,

The distribution function for an ideal Bose gas is given by,

f(z,5) = g [ el /AT -1}

-

a. Define all the quantities found in f(Z,5). (1 Points)
b. What is the value of g for photons? (1 Points)

¢. What is the meaning of the distribution function? Sketch the
distribution as a function of energy. Make sure to label your sketch
with the parameters. (1 Points)

d. For photons to be in thermal equilibrium there must be at least a
small amount of matter present, since the interaction between photons
is negligible. What processes bring the photons into equilibrium with
the matter? (1 Points)

e. Use the information in part d. and the definition of chemical
potential, p=0F/0N |1y to explain why the chemical potential of
photons must be zero. (2 Points)

f. Find the mean energy density of a photon gas in thermal equilib-
rium at temperature T. (4 Points)
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Problem 6 (10 Points):

A sample consists of N independent electric dipoles. Each dipole
has two possible quantum states with energies +uE where E is the
magnitude of an externally applied electric field. The lower energy
state has dipole moment u and the higher energy state has dipole
moment -u.

a. Find the total electric dipole moment of the sample in an electric
field E at temperature T. (2 Points)

b. What is the entropy of the sample? (2 Points)

c. Without using your result in b. explain physically what the entropy
should be in the limits of E— 0 and E — co. (2 Points)

Entropy versus temperature curves for two values of electric field
are shown below. Imagine that the sample is initially at state A, with
temperature Ty and field E;.

Entropy

T T,

Temperature

d. How much heat must be extracted from the sample to move it
from state A to state B, maintaining its temperature at T; while the
field is raised from F. tn Hy? (2 Points)

ate B, it is thermally isolated and the field

B FETS to E;, bringing the system from state B to
4) 4Q=-14S S erature of the sample once it reaches state
Q= ﬁ;dg "T%df’s =T (SQ’ &3 riables given in the problem? (2 Points)
St Si
8
=7 (S, SUT, D)
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b. Let mg denote the difference between the fraction of atoms with
M, =1 and the fraction with M, =—1%; mo= (N, -N_)/N. Derive the
following approximate implicit equation for mg in the limit of zero
field strength (H—0):

By + fJmg = kgT tanh™(myg)

(2 Points)

¢. From the expression in b., derive an expression for the critical
temperature T, for spontaneous magnetization. Express your answer
in terms of f, J, and Boltzmann’s constant. (2 Points)

d. Derive the walue of the critical exponent 8 (the degree of the
coexistence curve) that describes how the order parameter Mo(T)
behaves as the temperature T approaches the critical temperature T,
from below:

T —T,)

My ~ ( T
[+

) forT < T,

(3 Points)
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Problem 6 (10 Points):

Consider a white dwarf star that is composed of fully ionized *C and
160 (a neutral plasma). The particle density of the star is uniform,
and the electrons must be treated relativistically, E=pc.

a. Derive a relation between the Fermi energy of the electrons and
the electron density. (2 Points)

b. Derive a relation between the average kinetic energy of the elec-
trons and the Fermi energy. (1 Points)

c. The mass density is 10'2kg/m3. Calculate the average kinetic
energy of an electron, in MeV. (One MeV=1.6 x 1013]J.) (1 Points)

d. The temperature is 10°K. Calculate the average kinetic energy of
the nuclei. (1 Points)

e. According to the virial theorem the internal energy of a system is
approximately equal to its gravitational potential energy. For a sphere
of uniform density, the gravitational potential energy is 3GM?/5R.
Derive an expression for the mass of the white dwarf in terms of
fundamental constants only. (3 Points)

f. Calculate the mass of the white dwarf in solar masses. (1 'solar mass
= 2 x 10%%kg). A white dwarf in which the electrons are relativistic
1s unstable with respect to collapse, so the quantity that you have
calculated is approximately the maximum mass of a white dwarf, a
quantity called the Chandrasekhar mass (1.4 solar masses). Does
your numerical result look reasonable? Why or why not? (2 Points)
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