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Problem 6 (10 Points):
l

A large flat surface is in contact with a mono-atomic gas above it.
The volume of gas above the surface acts as an infinite reservoir of
gas atoms, but does not otherwise enter into the problem. The suface
consist of a square lattice of sites that gas atoms can occupy; denote
the number of gas atoms on site ¢ by n;, where n; € {0,1}, and the
total number of lattice sites by N;. The energy of the system is given
by:

E({n;}) Zn’E+UOZ Z nin; (1)

i JEn.n.

where ¢ is a binding energy of atom to the substrate, vg is an interac-
tion between adjacent atoms, and the sum over j is restricted to the
nearest neighbors of 1.

a. Write down an expression for the grand canonical partition func-
tion Z(T, ). Your answer should be in the form of a sum over states.
(2 Points)

b. Calculate the grand canonical free energy, (T, u, N) when vy = 0.
(2 Points)

¢. Calculate N, the number of gas atoms adsorbed to the surface, as
a function of T, u and Ns; when vy = 0. (2 Points)

d. When vy # 0 the problem is in general more difficult. To simplify
it, replace n; in the above sum by 7, a constant that will be set equal
to the average occupation of any site. Calculate the number of gas
atoms adsorbed to the surface, N, as a function of T, u, Ns; and #.
(2 Points)
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e. Discuss the possibility of a phase transition in 7 as a function W9 Qo e
of 3. This can be done by graphically investigating the requirement ‘
that N(T, 1, 7)/Ns = 7, or by returning to the expression for the energy Wen ng= 4 \idhreme- |
given in equation (1) and mapping it on to other well known problems sol
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Boson Magnetism Consider a gas of non-interacting spin-1 bosons
in 3D, each subject to the Hamiltonian

p2

H(p,s:) = g — nosB
21.2
= b — posP

where s takes on one of three possible states, s € (—1,0,4+1), and
k = p/h. In this Hamiltonian B is the z-component of the magnetic
field, m is the mass of a particle, and pq is the Bohr magneton. (We

will ignore the orbital effect (or Lorentz force) where the momentum g

would have been replaced, p — p+ (;/I/(,)

(a) In a grand canonical ensemble of chemical potential p (which is
not to be confused with the Bohr magneton, g, above) and tem-

perature 7', write down ns(k) the average occupation number of
the state with wave vector k and spin s. (1 point).

_————-—‘
N
@(—ﬂ “MesB- p\ (b) Show that the total number of particles in a given spin state s is

V)

- pe Qz‘mr side,

given by
14 BuosB
N = F (}3/2(”’<° )
where z is the fugacity, z = €®# )\ is the thermal de Broglie
wavelength,
) = h

2mmkgT
and g¢,(z) is defined on the formula section on page 2 above. (4
points)

\i (:Leﬁ}lo%) (c) The etization for fixed u and 7' is given by
ey Ny= 75%3" ') The magnetizat d 1 oa is given by

- 'XA %311 (22

19 Q. wX X= 75
\ = E’e”"“* Eﬁm\q 9B
B8=0 B=0

BB 3

M(T, 1) = po(Nyy — Nioy)

Show that the zero field susceptibility, x, is given by:

2l V

B=0
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Problem 4 (10 Points):

This problem involves the mean field Ising model. Consider a solid FaM
containing N electrons localized at lattice sites. Each electron has a g M=N}}~+°*“\"PP\(\)‘ ‘ﬂ\
magnetic moment p. In a magnetic field H each electron can exist in Y ]
one of two states, with energies +-u H. rol Y= of of “’MS‘&QS

a. Show that for non-interacting electrons the total magnetic moment 2 a) )
+22
is given by M:Nutanh(%ﬁ]—), (2 Points) é‘l";\\)\ sl \@}X DK

b. In order to add interactions between the electrons, assume that - s \(EP\*&
each electron sees an effective magnetic field equal to the applied field
plus alocal field arising from its neighbors. In this case, Heyy =H+§ M, oo () -~

where « is a positive constant. Write down a self consistency equation
that determines M. (2 Points)

oX
c. Show that there is a spontaneous magnetization (e.g. when H=0) F’M+ )\\{N‘
below some critical temperature, T., and determine its Value COS\'\’L(\

(3 Points)

N
d. Show that the magnetic susceptibility x, diverges at T—T, from K - leKp‘ = _B,}_L.-E
the high T side. (Hint: be careful because you will have to take a S s
derivative of a transcendental equation.) (3 Points) oSl )
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Problem 5 (10 Points):

A crystal lattice consists of N atoms. Each atom is in a quantum
state in which the total orbital angular momentum is zero and the
total spin angular momentum is S= }. The crystal is in an exter-
nal magnetic field By = ugH of magnetic field intensity H, where pg
is the permeability of free space. Choosing the z-axis to lie along the
field, we can specify a microstate in terms of the site indices o; for
each lattice site j, which are defined as o; = +1 if (M,); = :{:%, respec-
tively. In the Ising model, the energy E, for a microstate v, of a
one-dimensional crystal in this field is,

N N
Ep: —J Z Uin_BOZU_j~
j=1

(@7)nn

where J > 0 is a constant, and the subscript (4, j)n, means to sum once
over each nearest neighbor pair of sites. Now, define

N, = number of atoms witho; =1

N_. = number of atoms witho; = —1
Ny = number of nearest — neighbor pairs (¢, j) witho; = 1 and o, =1
N4 _ = number of nearest — neighbor pairs (i, j) with oy = land o; = -1

In terms of these quantities, the microstate energy for E, can be
written

1
By = —4JNyy +2JJ = Bo)Ny — 5(f7 ~2Bo)N,

where f is defined so that the number of nearest neighbor pairs with
at least one o;=11s fN;=2N  +N,_.
a. Write down expressions for the I" ¥ 7 AR A
terms of the canonical partition fu - ‘

artition function in terms of the m: =- Y J. ' ]
p E Bu% L ¥ IZ 2o,

to evaluate or simplify your expressi 3 e

=%
6 Q/'a !



b. Let mg denote the difference between the fraction of atoms with
M, =} and the fraction with M, =—1; mg= (N, -N_)/N. Derive the
following approximate implicit equation for mg in the limit of zero

field strength (H—0):

Bo + fJmg = kpT tanh™! (my)
(2 Points)

c. From the expression in b., derive an expression for the critical
temperature T, for spontaneous magnetization. Express your answer
in terms of {, J, and Boltzmann’s constant. (2 Points)

d. Derive the walue of the critical exponent B (the degree of the
coexistence curve) that describes how the order parameter Mg(T)
behaves as the temperature T approaches the critical temperature T
from below:

My ~ (T‘TC)

yforT < T,

(3 Points)
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Problem 4 (10 Points):

A closed system consists of two distinguishable spin 1 magnets. Each
magnet can have one of three orientations, 1, «, and |, with respect
to the z axis. The respective magnetic moments are +m, 0 and -m.
There is no applied field. The Hamiltonian, H = B £m,.

ﬁ% >4 '\A a. List all the possible microstates of the system. What is the total
o .
number of states? (1 Points) q (Y\'\CAOS‘\'OD\-QS, 5 Stodes, (2m‘m\ O) -y, - 2‘“}

b. For B=0 what is the probability that the total magnetic moment,
M, of the system is zero?(1 Points) 3 _ |
q

a—

3
T'&’ >\ ‘;A’ c. For B=0 compute average value of the total magnetic moment,

M), using the list in part (a.). (1 Point g =
(M), using the list in part (a.). (1 Points) %(03+%(+m)+%( hﬂ+—‘q(2m}\—_a(—-2m)—0

d. If AM=M—(M), show that (AM)?=(M?)-(M)?2, and compute (AM)?
for B=0. (2 Points)

e. If the spins were indistinguishable, what would be the total number
of microstates of the system? (1 Points .
ystem? ( DG M e A B e 4y

For the last two parts of this problem consider N of the spins described
in the initial part of the problem. These N spins are now in contact
with a heat bath at temperature, T, and B##0.

f. Find the partition function of the N spins. (2 Points)

g. What is the Helmholtz free energy of the N spins? (2 Points)

BEn _ _,F,m(2>+ ° . +pmB ={ | + 2coshBmB N I N eo.rkc\as
<€ ¢ e ) z ( fre) (distnopishable)

Hz=2¢
8 ¥= ‘—é\n’z’,’ ‘g\n(n Qcos‘nﬁmB)

AMZ= < (M-<MST) = < M2 - <tyg 4 <Ms? s

=< MZ - <MYy = <S> - <2

d\) AM = <AN\> = <N\-— <M >SS —>

<M>*=0

<M*> = % 2mz2 +2m2 4+ 4m? 4 Lm?
= 122 _ 2

ey
e



