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1 Newtonian Mechanics

• Set FN = 0 to find the point when two objects separate (ex. ball rolls off hemisphere)

• Momentum (p = mv, L = Iω) is conserved for all collisions; energy is conserved for elastic collisions

• Force = −∇U

• For periodic motion, if the equation of motion is ẍ+ ξx = 0, the frequency is ω =
√
ξ. If the equation

has a term linear in ẋ, that is a damping term.

• Power: P = dE
dt = ∆W

δt = ~F · ~v = ~τ · ~ω

1.1 Angular Motion

• Use v = ωr, x = θr, a = αr for basic angular motion

• Circular motion: ma = mv2

r = mω2r

• Torque: dL
dt = τ = ~r × ~F = Iα = Fd sin θ

• Period T = 2π
ω

• Remember: it’s often easier to find d sin θ than to find d and θ separately

• To derive moment of inertia: I =
∫
r2dm; solve for dm in terms of dr

• Can still also use ΣF = ma if it helps. Consider all forces acting at same point (point particle)

• Orbits:
∂2Veff

∂r2 > 0 for stable orbits. Use ∂V
∂r = 0 for circular orbits

• Parallel Axis Theorem: Inew = Ioriginal +MR2

Helpful moments of inertia:

• sphere: I = 2
5MR2

• disc: I = 1
2MR2

Rocket Ships: Use m = mass of ship, dm′=ejected mass, v=velocity of ship, −u=ejected mass velocity
relative to ship. Then we have:

pi = pf → 0 = (m− dm′)(v + dv) + dm′(v − u) (1)

Set v = 0 for simplicity, and dm = −dm′. After that it’s mostly algebra/calculus.
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2 Virtual Work

The principle of virtual work presents an alternative to Newtonian solutions for force problems. This method
uses the equations:

δW =
∑
i

~F ai · δ~ri = 0 δW =
∑
i

Qai δqi = 0 (2)

In these equations, ~F ai represent the net applied forces, and Qai represent the differentiated constraint equa-
tions. Transform the Qai equation into the generalized (simplest) coordinates, and solve the resulting equa-
tions.

For example, if the constraint equation is for two blocks connected by a massless rod: x2 + y2 − l2 = 0,
with x = l cos θ and y = l sin θ:

δW =
∑
i

Qai δqi = 0→ 2xδx+ 2yδy = 0→ δx cos θ + δy sin θ = 0 (3)

2.1 D’Alembert’s Principle

The virtual work method given previously works for systems in static equilibrium. To generalize this method
to dynamic systems, D’Alembert introduced a new “force of inertia” that modifies the virtual work equation
that governs forces:

δW =
∑
i

[
~F ai −mir̈i

]
· δ~ri = 0 (4)

3 Lagrangian & Hamiltonian

3.1 Lagrangian

• L = T − U

• Euler Lagrange Equation:
d

dt

∂L

∂q̇
− ∂L

∂q
= 0 (5)

• We can always add a total time derivative of a function to the Lagrangian for free (without changing
equations of motion):

L′ = L+
dF (q, q̇, t

dt
(6)

This kind of trick can give a simplified Hamiltonian, even making it a constant of the motion.

• A variable qi is cyclic if it does not appear in the Lagrangian. In that case, the associated momentum pi
is conserved/constant, and subtracting the associated piq̇i transforms the Lagrangian into the Routhian:

pi =
∂L

∂q̇i
= αi → R = L− αiq̇i (7)

3.2 Hamiltonian

• Legendre Transformation: H = pq̇ − L

• pq = ∂L
∂q̇

• Hamilton’s equations of motion: ṗq = −∂H∂q and q̇ = ∂H
∂pq

• Solve for q(t) using the E-L equation or Hamilton’s equations of motion (take dq̇
dt and plug in for ṗq)

• We can see that H is conserved (thus representing the total energy) if ∂H
∂t = 0 and if it includes no

terms that depend linearly on a momentum variable (only quadratically).
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• We can go farther, and write a momentum-space “Lagrangian“, similar to how we did the first Legendre
transform: K(p, ṗ, t) = qiṗi +H(q, p, t)

• KEcylindrical = 1
2m
(
ṙ2 + r2φ̇2 + ż2

)
• KEspherical = 1

2m
(
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

)
3.3 Undetermined Multipliers

If we can’t include some constraints when writing the Lagrangian, we have to take these constraints into
account in the Euler-Lagrange equation as undetermined multipliers:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Qai +

m∑
j=1

λjaji (8)

Each λj corresponds to each constraint equation fj , and each aji corresponds to
∂fj
∂qi

.
Each Qai corresponds to applied forces that cannot be written as part of the potential energy:

Qi =
∂~rj
∂qi
· ~Fj (9)

A constraint is holonomic if:
∂

∂y

∂f

∂x
=

∂

∂x

∂f

∂y
(10)

3.4 Canonical Transformations

“Guess” the Q & P to transform into in order to make ∂H
∂t = 0. Show canonical by [Q,P ]q,p = 1

Use existing p and q definitions to find generating functions:

p =
∂F1(q,Q)

∂q
P = −∂F1(q,Q)

∂P
(11)

p =
∂F2(q, P )

∂q
Q =

∂F2(q, P )

∂P
(12)

q = −∂F3(Q, p)

∂p
P = −∂F3(Q, p)

∂Q
(13)

q = −∂F4(p, P )

∂q
Q =

∂F4(p, P )

∂P
(14)

The generating function(s) result in a new Hamiltonian:

K(Q,P, t) = H(q, p, t) +
∂F2

∂t
(15)

The new Hamiltonian results in corresponding new equations of motion:

Ṗ = −∂K
∂Q

Q̇ =
∂K

∂P
(16)

H = T + U if ∂H
∂t = 0, no explicit time dependence, AND no terms linear in momentum/velocity
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3.5 Small Oscillations with Effective Potentials

To find frequency of small oscillations:

1. Write the Hamiltonian and find the effective potential, Veff (all terms that depend on q)

2. Find
∂2Veff

∂q2 |q=qmin where q represents the variable with small oscillations

3. Write the V matrix as:

V =
1

2
Ṽ q2 =

1

2

∂2Veff
∂q2

|qminq2 (17)

4. Write the T matrix as:

T =
1

2
T̃ q̇2 (18)

5. Solve for the frequency using Ṽ and T̃ :
Ṽ − ω2T̃ = 0 (19)

Quick way to get frequency: Make the Lagrangian look like: L = 1
2m
′η̇2 − 1

2k
′η2. Then ω =

√
k′

m′

3.6 Variational Calculus

The Euler-Lagrange equation can also solve other physics of path minimization, such as the brachistone
problem of minimizing time for a particle in a force field to travel between two points. To use the E-L for
this type of problem:

1. Write an equation that describes the motion and the element to minimize, such as dt = ds
v . The element

to minimize should be alone on the LHS.

2. Add an integration symbol on both sides: t =
∫
ds
v

3. Write the RHS differential in terms of path variables, such as dx and dy, in order to evaluate the

integral, such as: t =
∫ √

1+x′2√
2gy

dy

4. Use the E-L equation on the integrand, using the appropriate variables, such as: ∂F
∂x −

d
dy

∂F
∂x′ = 0

5. Solve the resulting equation by separation of variables, such as x(y) =
∫ √

y
(c2/2g)−ydy

4 Vector Potentials

Remember that the vector potential due to a particle in a magnetic field is:

~A = −1

2
B0(yx̂− xŷ) (20)

And to find the potential, use:
U = qφ− q ~A · ~v (21)

where φ represents the electric potential.
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5 Small Oscillations

Standard coordinates define how the blocks are displaced relative to each other, while small coordinates
(usually η) define how the blocks are displaced relative to their original equilibrium position. Start by writing
the Lagrangian in standard coordinates, then transform to small coordinates. Then use these notations:

L =
1

2
Tη̇iη̇j −

1

2
Vηiηj (22)

Use ∂V
∂qi
|q0i = 0 to find the minimum point q0i, and V =

∂2Veff

∂q2
i

|q0i =
∂2Veff

∂ηiηj
|0 to find V.

Then use T and V to solve for the frequency(s):

|V− λT| = 0 (23)

where λ = ω2, to solve for the frequencies ωi. To find the eigenvectors:

(V− λiT)~ci = 0 (24)

these ~ci also make up the amplitude ratios for λi,
A1

A2
:

(V− λiT)

(
A1

A2

)
= 0 (25)

To normalize the eigenvectors:
~Ci = Ni~ci → ~CTi T~Ci = 1 (26)

Solve for Ni. Finally, to write the displacement of the system as a function of time:

Ai = ~CTi Tη(0) (27)

ω2
i > 0→ ωiBi = ~CTi Tη̇(0) (28)

ωi = 0→ Bi = ~CTi Tη̇(0) (29)

The general solution can now be written as:

~η(t) =
∑
ω2

i
>0

~Ci(Aicosωit+Bi sinωit) +
∑
ω2

i
=0

~Ci(Ai +Bit) (30)

Smaller ω’s correspond to more symmetry in the oscillation mode.

6 Central Forces &
the Hamilton Jacobi Equation

Whenever we have two masses exerting a force on each other, we can move into the center of mass reference
frame and consider the reduced mass combination acted on by a central force, since the center of mass of the
system does not move.

Orbits & Stability

• A circular orbit is stable if
∂2Veff

∂r2 > 0

• To find the radius for circular orbit, set ∂V
∂r = 0 and solve for r (can also use Hamilton’s equations)

• To find the condition on the radius for circular orbit, find
∂2Veff

∂r2 > 0 and substitute in the radius for
circular orbit

Steps for Solving Motion with the Hamilton-Jacobi
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1. Background : We can transform H without loss of generality to K = H + ∂S
∂t = 0. Assuming then that

S, Hamilton’s principle/generating function is separable (S(q, t) = S1(t) + S2(q)) and p = ∂S
∂q , we can

rearrange K to be:

1

2m

(
∂S2

∂q

)2

+ V (q) = −∂S1

∂t
(31)

Now the variables are separated, and we can set both sides equal to a constant, E. This makes solving
for S1 and S2 a matter of maths.

2. Write Hamilton’s equation, and substitute ∂S2

∂q for each pq term. (S2 is sometimes referred to as W )

3. Separate variables - this usually entails writing everything not dependent on r inside a bracket, and
setting that bracket equal to α3. (This is usually the total angular momentum, which we can see is a
constant of the motion by finding [L,H] = 0). Or solve so that r is on one side of the equation, and θ
and φ are on the other side, then set both sides equal to α3.

4. Assuming W is separable (example W (r, θ, φ) = Wr+Wθ+Wφ), find integrals defining each component
of W .

5. Use pq = ∂W
∂q to find the meaning of α2 and α3.

6. Use the form ∂W
∂E = t+ β to solve for the motion of r depending on E and α’s.

7. Additional : It may be useful to also remember that Q = ∂S2

∂P = ∂S2

∂E and Q̇ = ∂H
∂P = ∂H

∂E .

The “action”, J is equivalent to S2(q) as long as S(q, t) is separable:

J =

∫
pdq =

∫
PdQ (32)

Given this J , the frequency of motion is:

νi =
∂E

∂Ji
(33)

where E came from integrating the action J and solving for E(J).

7 The Poisson Bracket

The poisson bracket is a good method of determining which elements associated with a Hamiltonian are
constants of motion:

du

dt
= [u,H]qi,pi +

∂u

∂t
(34)

[u,H]qi,pi =

n∑
i

(
∂u

∂qi

∂H

∂pi
− ∂u

∂pi

∂H

∂qi

)
(35)

For example, given angular momentum J = q1p2− q2p1, the poisson bracket of J with H quickly shows that
the angular momentum is conserved:

dJ

dt
= [J,H]qi,pi = 0 (36)

In general, to find whether an element is a constant of motion:

1. Write the element A in terms of qi and pi

2. Write the Hamiltonian according to the physical description

3. Find dA
dt = [A,H]qi,pi + ∂A

∂t

For canonical variables:
[qi, qj ] = 0 [qi, pj ] = δij [pi, pj ] = 0 (37)

The poisson bracket also helps verify that transformations are properly canonical:

[Q,P ]q,p = 1 (38)
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8 Extra

8.1 Conservative Forces

A force is conservative if ~∇× ~F = 0. In Cartesian coordinates, can find this as: ∂Fi

∂j =
∂Fj

∂i

8.2 Nonhomogeneous Equations

Solving a non-homogeneous equation requires the combination of a particular and a complementary solution:

ẏ + ay = b → y(t) = yp(t) + yc(t) (39)

1. The particular solution should be of the form yp(t) = At2 +Bt+C, keeping only the terms so that yp(t)
is a polynomial of the same order as the right hand side of the original equation. So in this example,
yp(t) = C.

2. The complementary solution solves y(t) for the right hand side equalling zero: ẏ + ay = 0. Solve this
the usual way, including the constant of integration.

3. Write y(t) = yp(t) + yc(t), and substitute these results back into the original equation. Use the original
equation and initial conditions to solve for the constants of integration.

Remember that a second derivative equation of motion can be handled as a first derivative equation by writing
it in terms of velocity instead of position: ÿ + aẏ = b→ v̇y + avy = b

9 Coordinate Systems

9.1 Cartesian

Convert to spherical: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

Convert to cylindrical: x = ρ cosφ, y = ρ sinφ, z = z

9.2 Spherical

r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (40)

θ̂ =
∂r̂

∂θ
& φ̂ =

∂r̂

∂φ
(41)

Derivation of a small chunk of circular area (such as in Kepler’s law for orbits):

S = rθ → dS = rdθ → dA = R2dθ (42)

9.3 Cylindrical

r̂ = cos θx̂+ sin θŷ (43)

θ̂ =
∂r̂

∂θ
(44)

7


