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1 Definitions

The position vector:

~r ≡ xx̂+ yŷ + zẑ → r̂ =
~r

r
(1)

The source point uses ~r′ while the field point uses ~r, so that [cursive r]=~r − ~r′.

2 Electrostatics

2.1 Source Charges

Coulomb’s Law (SI units):

~F =
qQ

4πε0

1

|~r − ~r′|2
ˆ~r − ~r′ (2)

Electric field due to source charges:

~E(~r) =
1

4πε0

n∑
i=1

qi
|~r − ~r′|2

ˆ~r − ~r′ (3)

Such that ~F = Q~E.

For continuous charge distributions:

~E(~r) =
1

4πε0

∫
1

|~r − ~r′|2
ˆ~r − ~r′dq (4)

The charge element dq takes different forms depending on how the charge is spread out:

dq → λdl′ → σda′ → ρdτ ′ (5)

Note that the unit vector ˆ~r − ~r′ is not constant and cannot be taken out of the integral. In order to take
the unit vector outside the integral, it must first be converted to Cartesian components, even if we then use
curvilinear coordinates to perform the integration.

2.2 Flux

Flux through a surface S is measured as:

Φ =

∫
S

~E · d~a (6)

This leads to Gauss’ Law: ∫
S

~E · d~a =
qenc
ε0
→ ∇ · ~E =

ρ

ε0
(7)
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2.3 Electric Potential

To prove Maxwell’s equation that no static electric fields have curl, simply use Stokes’ theorem to show that:∮
~E · d~l = 0→ ∇× ~E = 0 (8)

This leads to the definition of electric potential:

~E = −∇Φ→ Φ(~r) = −
∫ ~r

0

~E · d~l (9)

Electric potential obeys superposition just as electric field does.

It is sometimes easier to calculate the potential first and then find the gradient to get the electric field.
Assuming the reference point at infinity:

V (~r) =
1

4πε0

∫
ρ(~r′)

|~r − ~r′|
dτ ′ (10)

In this way we avoid the messy calculation of ˆ(~r − ~r′).

2.3.1 Some Helpful Potentials

The potential of a dipole:

Φdip =
~p · ~r

4πε0r3
(11)

2.4 Surface Charge Density

σ = −ε ~E|boundary = −ε∂Φ

∂n
|boundary (12)

3 Special Techniques

3.1 Separation of Variables

Remember that separable solutions to the LaPlace equation can simplify geometries. For example:

V (x, y, z) = VxVyVz →
1

Vx

∂Vx
∂x

+
1

Vy

∂Vy
∂y

+
1

Vz

∂Vz
∂z

= 0 (13)

If the coefficient is chosen positive, such as 1
Vx

∂Vx

∂x = k2, then the solution is of the form:

Vx = Aekx +Be−kx (14)

If the coefficient is chosen negative, such as 1
Vx

∂Vx

∂x = −k2, then the solution is of the form:

Vx = A sin kx+ b cos ky (15)

Usually choose the positive direction to be the direction in which nonzero potential lies. Another helpful
identity to use in simplifying these integrals:∫ a

0

sin(nπy/a) sin(n′πy/a)dy =
a

2
δnn′ (16)
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4 Legendre Polynomials

A number of helpful identities and definitions can simplify some complicated geometries, especially if they
have azimuthal symmetry:

1

|~r − ~r′|
=

l=∞∑
l=0

rl<
rl+1
>

Pl(cos γ) (17)

where γ is the angle between ~r and ~r′.

Also in spherical dimensions, the potential that solves the Laplace equation ∇2Φ can be written as:

Φ =

∞∑
l=0

(Alr
l +

Bl

rl+1
)Pl(cos θ) (18)

This can then be simplified with boundary conditions.

Also the following identity can be helpful:∫ 1

−1
Pl(x)Pl′(x)dx =

2

2l + 1
δll′ (19)

5 Helpful Maths

5.1 Tensors and Vectors

Remember that the vector product is distributive:

~A× ( ~B + ~C) = ( ~A× ~B) + ( ~A× ~C) (20)

The scalar triple product is the volume of the parallelepiped generated by the three vectors:

~A · ( ~B × ~C) = ~B · (~C × ~A) = ~C · ( ~A× ~B) (21)

Note that the order of the vectors is preserved. In this case | ~B × ~C| is the area of the base of the paral-
lelepiped, and |vecA cos θ| is the height.

The vector triple product follows the BAC-CAB rule:

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (22)

The gradient points in the direction of maximum increase of the function (magnitude of gradient gives slope):

∇T ≡ ∂T

∂x
x̂+

∂T

∂y
ŷ +

∂T

∂z
ẑ (23)

The divergence measures how much the vector spreads out from the point in question:

∇× ~T =
∂T

∂x
+
∂T

∂y
+
∂T

∂z
(24)

The curl measures how much the vector curls around the point in question: ∇× ~T . These operations result
in six product rules:

∇(fg) = f∇g + g∇f (25)

∇( ~A · ~B) = ~A× (∇× ~B) + ~B × (∇× ~A) + ( ~A · ∇) ~B + ( ~B · ∇) ~A (26)

∇ · (f ~A) = f(∇ · ~A) + ~A · (∇f) (27)

∇ · ( ~A× ~B) = ~B · (∇× ~A)− ~A · (∇× ~B) (28)

∇× (f ~A) = f(∇× ~A)− ~A× (∇f) (29)
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∇× ( ~A× ~B) = ( ~B · ∇) ~A− ( ~A · ∇) ~B + ~A(∇ · ~B)− ~B(∇ · ~A) (30)

Remember that the divergence of a curl and the curl of a gradient are always zero.

The Laplacian comes up often: ∇ · (∇T ) = ∇2T

The fundamental theorem for gradients:∫ b

a

(∇T ) · d~l = T (~b)− T (~a) (31)

That is, the line integral of the gradient is path independent.

The fundamental theorem for divergences - Green’s theorem:∫
V

(∇ · ~v)dτ =

∫
S

~v · d~a (32)

The fundamental theorem for curls - Stokes’ theorem:∫
S

(∇× ~v) · d~a =

∫
P

~v · d~l (33)

5.2 Curvilinear Coordinates

5.2.1 Spherical Polar Coordinates

Converting from Cartesian:

x = r sin θ cosφ y = r sin θ sinφ z = r cos θ (34)

Likewise,
r̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (35)

θ̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ (36)

φ̂ = − sinφx̂+ cosφŷ (37)

Note that since the direction of the spherical components change relative to the cartesian coordinates,
straightforward addition of two vectors by spherical component is usually not possible.

The length element:
d~l = drr̂ + rdθθ̂ + r sin θdφφ̂ (38)

The area element:
da = r2 sin θdθdφ (39)

The volume element:
dτ = r2 sin θdrdθdφ (40)

The gradient:

∇T =
∂T

∂r
r̂ +

1

r

∂T

∂θ
θ̂ +

1

r sin θ

∂T

∂φ
φ̂ (41)

The divergence:
(42)

The curl:
(43)
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5.2.2 Cylindrical Coordinates

Converting from Cartesian:
x = r cosφ y = r sinφ z = z (44)

Likewise,
r̂ = cosφx̂+ sinφŷ (45)

φ̂ = − sinφx̂+ cosφŷ (46)

ẑ = ẑ (47)

The length element:
d~l = drr̂ + rdφφ̂+ dzẑ (48)

The volume element:
dτ = rdrdφdz (49)

The gradient:

∇T =
∂T

∂r
r̂ +

1

r

∂T

∂φ
φ̂+

∂T

∂z
ẑ (50)

The divergence:
(51)

The curl:
(52)

The Laplacian:
(53)

5.3 The Dirac Delta Function

5.3.1 The 1D Case ∫ ∞
−∞

δ(x)dx = 1 (54)

The delta function picks out x = 0 (or x′ as the case may be):∫ ∞
−∞

f(x)δ(x)dx = f(0) (55)

5.3.2 The 3D Case

The delta function can be generalized to three dimensions:

δ3(~r) = δ(x)δ(y)δ(z) (56)

5.4 Theory of Vector Fields

Theorem 1: Curl-less/“Irrotational” Fields: If a vector satisfies one of the following, it satisfies all of them.

• ∇ × ~F = 0 everywhere

•
∫ b

a
~F · d~l is independent of path for any given end points

•
∫
~F · d~l = 0 for any closed loop

• ~F is the gradient of a scalar, ~F = −∇V

Theorem 2: Divergence-less/“Solenoidal” Fields: If a vector satisfies one of the following, it satisfies all of
them.

• ∇ · ~F = 0 everywhere
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•
∫
~F · d~a is independent of surface for any given boundary line

•
∫
~F · d~a = 0 for any closed surface

• ~F is the curl of some vector, ~F = ∇× ~A
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